A scalar field with an exponential potential has the particular property that it is attracted into a solution in which its energy scales as the dominant component (radiation or matter) of the Universe, contributing a fixed fraction of the total energy density. We study the growth of perturbations in a CDM dominated \(\Omega=1\) universe with this extra field, with an initial flat spectrum of adiabatic fluctuations. The observational constraints from structure formation are satisfied as well, or better, than in other models, with a contribution to the energy density from the scalar field \(\Omega_\phi \sim 0.1\) which is small enough to be consistent with entry into the attractor prior to nucleosynthesis.