19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Genome assembly of the Pink Ipê (Handroanthus impetiginosus, Bignoniaceae), a highly valued, ecologically keystone Neotropical timber forest tree

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Handroanthus impetiginosus (Mart. ex DC.) Mattos is a keystone Neotropical hardwood tree widely distributed in seasonally dry tropical forests of South and Mesoamerica. Regarded as the “new mahogany,” it is the second most expensive timber, the most logged species in Brazil, and currently under significant illegal trading pressure. The plant produces large amounts of quinoids, specialized metabolites with documented antitumorous and antibiotic effects. The development of genomic resources is needed to better understand and conserve the diversity of the species, to empower forensic identification of the origin of timber, and to identify genes for important metabolic compounds.

          Findings

          The genome assembly covers 503.7 Mb (N50 = 81 316 bp), 90.4% of the 557-Mbp genome, with 13 206 scaffolds. A repeat database with 1508 sequences was developed, allowing masking of ∼31% of the assembly. Depth of coverage indicated that consensus determination adequately removed haplotypes assembled separately due to the extensive heterozygosity of the species. Automatic gene prediction provided 31 688 structures and 35 479 messenger RNA transcripts, while external evidence supported a well-curated set of 28 603 high-confidence models (90% of total). Finally, we used the genomic sequence and the comprehensive gene content annotation to identify genes related to the production of specialized metabolites.

          Conclusions

          This genome assembly is the first well-curated resource for a Neotropical forest tree and the first one for a member of the Bignoniaceae family, opening exceptional opportunities to empower molecular, phytochemical, and breeding studies. This work should inspire the development of similar genomic resources for the largely neglected forest trees of the mega-diverse tropical biomes.

          Related collections

          Most cited references55

          • Record: found
          • Abstract: found
          • Article: not found

          Ab initio gene finding in Drosophila genomic DNA.

          Ab initio gene identification in the genomic sequence of Drosophila melanogaster was obtained using (human gene predictor) and Fgenesh programs that have organism-specific parameters for human, Drosophila, plants, yeast, and nematode. We did not use information about cDNA/EST in most predictions to model a real situation for finding new genes because information about complete cDNA is often absent or based on very small partial fragments. We investigated the accuracy of gene prediction on different levels and designed several schemes to predict an unambiguous set of genes (annotation CGG1), a set of reliable exons (annotation CGG2), and the most complete set of exons (annotation CGG3). For 49 genes, protein products of which have clear homologs in protein databases, predictions were recomputed by Fgenesh+ program. The first annotation serves as the optimal computational description of new sequence to be presented in a database. Reliable exons from the second annotation serve as good candidates for selecting the PCR primers for experimental work for gene structure verification. Our results shows that we can identify approximately 90% of coding nucleotides with 20% false positives. At the exon level we accurately predicted 65% of exons and 89% including overlapping exons with 49% false positives. Optimizing accuracy of prediction, we designed a gene identification scheme using Fgenesh, which provided sensitivity (Sn) = 98% and specificity (Sp) = 86% at the base level, Sn = 81% (97% including overlapping exons) and Sp = 58% at the exon level and Sn = 72% and Sp = 39% at the gene level (estimating sensitivity on std1 set and specificity on std3 set). In general, these results showed that computational gene prediction can be a reliable tool for annotating new genomic sequences, giving accurate information on 90% of coding sequences with 14% false positives. However, exact gene prediction (especially at the gene level) needs additional improvement using gene prediction algorithms. The program was also tested for predicting genes of human Chromosome 22 (the last variant of Fgenesh can analyze the whole chromosome sequence). This analysis has demonstrated that the 88% of manually annotated exons in Chromosome 22 were among the ab initio predicted exons. The suite of gene identification programs is available through the WWW server of Computational Genomics Group at http://genomic.sanger.ac.uk/gf. html.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Microsatellites are preferentially associated with nonrepetitive DNA in plant genomes.

            Microsatellites are a ubiquitous class of simple repetitive DNA sequence. An excess of such repetitive tracts has been described in all eukaryotes analyzed and is thought to result from the mutational effects of replication slippage. Large-scale genomic and EST sequencing provides the opportunity to evaluate the abundance and relative distribution of microsatellites between transcribed and nontranscribed regions and the relationship of these features to haploid genome size. Although this has been studied in microbial and animal genomes, information in plants is limited. We assessed microsatellite frequency in plant species with a 50-fold range in genome size that is mostly attributable to the recent amplification of repetitive DNA. Among species, the overall frequency of microsatellites was inversely related to genome size and to the proportion of repetitive DNA but remained constant in the transcribed portion of the genome. This indicates that most microsatellites reside in regions pre-dating the recent genome expansion in many plants. The microsatellite frequency was higher in transcribed regions, especially in the untranslated portions, than in genomic DNA. Contrary to previous reports suggesting a preferential mechanism for the origin of microsatellites from repetitive DNA in both animals and plants, our findings show a significant association with the low-copy fraction of plant genomes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Identification of protein coding regions by database similarity search.

              Sequence similarity between a translated nucleotide sequence and a known biological protein can provide strong evidence for the presence of a homologous coding region, even between distantly related genes. The computer program BLASTX performed conceptual translation of a nucleotide query sequence followed by a protein database search in one programmatic step. We characterized the sensitivity of BLASTX recognition to the presence of substitution, insertion and deletion errors in the query sequence and to sequence divergence. Reading frames were reliably identified in the presence of 1% query errors, a rate that is typical for primary sequence data. BLASTX is appropriate for use in moderate and large scale sequencing projects at the earliest opportunity, when the data are most prone to containing errors.
                Bookmark

                Author and article information

                Journal
                Gigascience
                Gigascience
                gigascience
                GigaScience
                Oxford University Press
                2047-217X
                January 2018
                13 December 2017
                13 December 2017
                : 7
                : 1
                : gix125
                Affiliations
                [1 ]EMBRAPA Recursos Genéticos e Biotecnologia, EPqB, Brasília, DF. 70770–910, Brazil
                [2 ]Programa de Ciências Genômicas e Biotecnologia – Universidade Católica de Brasília, SGAN 916 Modulo B, Brasilia, DF 70790-160, Brazil
                [3 ]Escola de Agronomia, Universidade Federal de Goiás, CP 131. Goiânia, GO. 74001–970, Brazil
                [4 ]Laboratório de Genética and Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal de Goiás. Goiânia, GO. 74001–970, Brazil
                Author notes
                Correspondence address. Rosane Garcia Collevatti, Instituto de Ciências Biológicas, Universidade Federal de Goiás, 74001–970, Goiânia, GO, Brasil. Tel: +55 62 3521-1729; E-mail: rosanegc68@ 123456hotmail.com
                Article
                gix125
                10.1093/gigascience/gix125
                5905499
                29253216
                7685f26b-065d-44a8-a4c8-21bfb5192cb5
                © The Author 2017. Published by Oxford University Press.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 28 June 2017
                : 27 September 2017
                : 30 November 2017
                Page count
                Pages: 16
                Categories
                Data Note

                heterozygous genome,rna-seq,transposable elements,quinoids,bignoniaceae

                Comments

                Comment on this article