31
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Use of REP- and ERIC-PCR to reveal genetic heterogeneity of Vibrio cholerae from edible ice in Jakarta, Indonesia

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Vibrio cholerae is the causative organism of waterborne disease, cholera. V. cholerae has caused many epidemics and pandemics of cholera for many years. In this study, V. cholerae recovered from edible ice were investigated for their genetic diversity using Enterobacterial Repetitive Intergenic Consensus (ERIC) PCR and Repetitive Extragenic Palindromic (REP) PCR. Isolation was done using selective medium and the presumptive isolates were confirmed through biochemical and serological assays.

          Results

          Seventy-five isolates of V. cholerae were recovered from ice samples collected from different locations of Jakarta. Specifically, 19 of them were identified as O1 serotype, 16 were Ogawa, 3 isolates were Inaba and the remaining isolates were non-O1. The fingerprinting profiles of V.cholerae isolated from ice samples were very diverse.

          Conclusion

          This result showed that the ERIC sequence is more informative and discriminative than REP sequence for analysis of V. cholerae diversity.

          Related collections

          Most cited references12

          • Record: found
          • Abstract: found
          • Article: not found

          Distribution of repetitive DNA sequences in eubacteria and application to fingerprinting of bacterial genomes.

          Dispersed repetitive DNA sequences have been described recently in eubacteria. To assess the distribution and evolutionary conservation of two distinct prokaryotic repetitive elements, consensus oligonucleotides were used in polymerase chain reaction [PCR] amplification and slot blot hybridization experiments with genomic DNA from diverse eubacterial species. Oligonucleotides matching Repetitive Extragenic Palindromic [REP] elements and Enterobacterial Repetitive Intergenic Consensus [ERIC] sequences were synthesized and tested as opposing PCR primers in the amplification of eubacterial genomic DNA. REP and ERIC consensus oligonucleotides produced clearly resolvable bands by agarose gel electrophoresis following PCR amplification. These band patterns provided unambiguous DNA fingerprints of different eubacterial species and strains. Both REP and ERIC probes hybridized preferentially to genomic DNA from Gram-negative enteric bacteria and related species. Widespread distribution of these repetitive DNA elements in the genomes of various microorganisms should enable rapid identification of bacterial species and strains, and be useful for the analysis of prokaryotic genomes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Epidemiology, genetics, and ecology of toxigenic Vibrio cholerae.

            Cholera caused by toxigenic Vibrio cholerae is a major public health problem confronting developing countries, where outbreaks occur in a regular seasonal pattern and are particularly associated with poverty and poor sanitation. The disease is characterized by a devastating watery diarrhea which leads to rapid dehydration, and death occurs in 50 to 70% of untreated patients. Cholera is a waterborne disease, and the importance of water ecology is suggested by the close association of V. cholerae with surface water and the population interacting with the water. Cholera toxin (CT), which is responsible for the profuse diarrhea, is encoded by a lysogenic bacteriophage designated CTXPhi. Although the mechanism by which CT causes diarrhea is known, it is not clear why V. cholerae should infect and elaborate the lethal toxin in the host. Molecular epidemiological surveillance has revealed clonal diversity among toxigenic V. cholerae strains and a continual emergence of new epidemic clones. In view of lysogenic conversion by CTXPhi as a possible mechanism of origination of new toxigenic clones of V. cholerae, it appears that the continual emergence of new toxigenic strains and their selective enrichment during cholera outbreaks constitute an essential component of the natural ecosystem for the evolution of epidemic V. cholerae strains and genetic elements that mediate the transfer of virulence genes. The ecosystem comprising V. cholerae, CTXPhi, the aquatic environment, and the mammalian host offers an understanding of the complex relationship between pathogenesis and the natural selection of a pathogen.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Use of repetitive DNA sequences and the PCR To differentiate Escherichia coli isolates from human and animal sources.

              The rep-PCR DNA fingerprint technique, which uses repetitive intergenic DNA sequences, was investigated as a way to differentiate between human and animal sources of fecal pollution. BOX and REP primers were used to generate DNA fingerprints from Escherichia coli strains isolated from human and animal sources (geese, ducks, cows, pigs, chickens, and sheep). Our initial studies revealed that the DNA fingerprints obtained with the BOX primer were more effective for grouping E. coli strains than the DNA fingerprints obtained with REP primers. The BOX primer DNA fingerprints of 154 E. coli isolates were analyzed by using the Jaccard band-matching algorithm. Jackknife analysis of the resulting similarity coefficients revealed that 100% of the chicken and cow isolates and between 78 and 90% of the human, goose, duck, pig, and sheep isolates were assigned to the correct source groups. A dendrogram constructed by using Jaccard similarity coefficients almost completely separated the human isolates from the nonhuman isolates. Multivariate analysis of variance, a form of discriminant analysis, successfully differentiated the isolates and placed them in the appropriate source groups. Taken together, our results indicate that rep-PCR performed with the BOX A1R primer may be a useful and effective tool for rapidly determining sources of fecal pollution.
                Bookmark

                Author and article information

                Journal
                Gut Pathog
                Gut Pathog
                Gut Pathogens
                BioMed Central
                1757-4749
                2012
                15 March 2012
                : 4
                : 2
                Affiliations
                [1 ]Faculty of Biotechnology, Atma Jaya Catholic University of Indonesia, Jalan Jenderal Sudirman 51, Jakarta 12930, Indonesia
                [2 ]Cholera and Environmental Biology Lab, Rajiv Gandhi Centre for Biotechnology (Dept. of Biotechnology, Govt. of India), Trivandrum-695 014, Kerala, India
                Article
                1757-4749-4-2
                10.1186/1757-4749-4-2
                3359277
                768cede5-d38e-40e3-80c2-515c284792cc
                Copyright ©2012 Waturangi et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 14 February 2012
                : 15 March 2012
                Categories
                Research

                Gastroenterology & Hepatology
                rep-pcr,edible ice,eric-pcr,vibrio cholerae
                Gastroenterology & Hepatology
                rep-pcr, edible ice, eric-pcr, vibrio cholerae

                Comments

                Comment on this article