We investigated whether myocardium-derived conditioned medium (MDCM) is effective in preserving left ventricular (LV) function in a rat acute myocardial infarction (AMI) model.
Adult male Sprague-Dawley (SD) rats (n = 36) randomized to receive either left coronary artery ligation (AMI induction) or thoracotomy only (sham procedure) were grouped as follows (n = 6 per group): Group I, II, and III were sham-controls treated by fresh medium, normal rat MDCM, and infarct-related MDCM, respectively. Group IV, V, and VI were AMI rats treated by fresh medium, normal MDCM, and infarct-related MDCM, respectively. Either 75 μL MDCM or fresh medium was administered into infarct myocardium, followed by intravenous injection (3 mL) at postoperative 1, 12, and 24 h.
In vitro studies showed higher phosphorylated MMP-2 and MMP-9, but lower α-smooth muscle actin and collagen expressions in neonatal cardiac fibroblasts treated with MDCM compared with those in the cardiac fibroblasts treated with fresh medium (all p < 0.05). Sirius-red staining showed larger collagen deposition area in LV myocardium in Group IV than in other groups (all p < 0.05). Stromal cell-derived factor-1α and CXCR4 protein expressions were higher in Group VI than in other groups (all p < 0.05). The number of von Willebrand factor- and BrdU-positive cells and small vessels in LV myocardium as well as 90-day LV ejection fraction were higher, whereas oxidative stress was lower in Group VI than in Group IV and Group V (all p < 0.05).