44
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Positive and negative impacts of nonspecific sites during target location by a sequence-specific DNA-binding protein: origin of the optimal search at physiological ionic strength

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The inducible transcription factor Egr-1, which recognizes a 9-bp target DNA sequence via three zinc-finger domains, rapidly activates particular genes upon cellular stimuli such as neuronal signals and vascular stresses. Here, using the stopped-flow fluorescence method, we measured the target search kinetics of the Egr-1 zinc-finger protein at various ionic strengths between 40 and 400 mM KCl and found the most efficient search at 150 mM KCl. We further investigated the kinetics of intersegment transfer, dissociation, and sliding of this protein on DNA at distinct concentrations of KCl. Our data suggest that Egr-1's kinetic properties are well suited for efficient scanning of chromosomal DNA in vivo. Based on a newly developed theory, we analyzed the origin of the optimal search efficiency at physiological ionic strength. Target association is accelerated by nonspecific binding to nearby sites and subsequent sliding to the target as well as by intersegment transfer. Although these effects are stronger at lower ionic strengths, such conditions also favor trapping of the protein at distant nonspecific sites, decelerating the target association. Our data demonstrate that Egr-1 achieves the optimal search at physiological ionic strength through a compromise between the positive and negative impacts of nonspecific interactions with DNA.

          Related collections

          Most cited references47

          • Record: found
          • Abstract: not found
          • Article: not found

          The molecular theory of polyelectrolyte solutions with applications to the electrostatic properties of polynucleotides.

          G Manning (1978)
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Determinants of nucleosome organization in primary human cells

            Nucleosomes are the basic packaging units of chromatin, modulating accessibility of regulatory proteins to DNA and thus influencing eukaryotic gene regulation. Elaborate chromatin remodeling mechanisms have evolved that govern nucleosome organization at promoters, regulatory elements, and other functional regions in the genome 1 . Analyses of chromatin landscape have uncovered a variety of mechanisms, including DNA sequence preferences, that can influence nucleosome positions 2–4 . To identify major determinants of nucleosome organization in the human genome, we utilized deep sequencing to map nucleosome positions in three primary human cell types and in vitro. A majority of the genome exhibited substantial flexibility of nucleosome positions while a small fraction showed reproducibly positioned nucleosomes. Certain sites that position in vitro can anchor the formation of nucleosomal arrays that have cell type-specific spacing in vivo. Our results unveil an interplay of sequence-based nucleosome preferences and non-nucleosomal factors in determining nucleosome organization within mammalian cells.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              How do site-specific DNA-binding proteins find their targets?

              Essentially all the biological functions of DNA depend on site-specific DNA-binding proteins finding their targets, and therefore 'searching' through megabases of non-target DNA. In this article, we review current understanding of how this sequence searching is done. We review how simple diffusion through solution may be unable to account for the rapid rates of association observed in experiments on some model systems, primarily the Lac repressor. We then present a simplified version of the 'facilitated diffusion' model of Berg, Winter and von Hippel, showing how non-specific DNA-protein interactions may account for accelerated targeting, by permitting the protein to sample many binding sites per DNA encounter. We discuss the 1-dimensional 'sliding' motion of protein along non-specific DNA, often proposed to be the mechanism of this multiple site sampling, and we discuss the role of short-range diffusive 'hopping' motions. We then derive the optimal range of sliding for a few physical situations, including simple models of chromosomes in vivo, showing that a sliding range of approximately 100 bp before dissociation optimizes targeting in vivo. Going beyond first-order binding kinetics, we discuss how processivity, the interaction of a protein with two or more targets on the same DNA, can reveal the extent of sliding and we review recent experiments studying processivity using the restriction enzyme EcoRV. Finally, we discuss how single molecule techniques might be used to study the dynamics of DNA site-specific targeting of proteins.
                Bookmark

                Author and article information

                Journal
                Nucleic Acids Res
                Nucleic Acids Res
                nar
                nar
                Nucleic Acids Research
                Oxford University Press
                0305-1048
                1362-4962
                01 July 2014
                16 May 2014
                16 May 2014
                : 42
                : 11
                : 7039-7046
                Affiliations
                [1 ]Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555, USA
                [2 ]Department of Chemistry and Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, USA
                Author notes
                [* ]To whom correspondence should be addressed. Tel: +1 409 747 1403; Fax: +1 409 772 6334; Email: j.iwahara@ 123456utmb.edu
                Article
                10.1093/nar/gku418
                4066804
                24838572
                76a13697-0f5d-4194-b0dc-158e7a878f54
                © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/3.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 30 April 2014
                : 27 April 2014
                : 27 February 2014
                Page count
                Pages: 8
                Categories
                Gene regulation, Chromatin and Epigenetics
                Custom metadata
                2014

                Genetics
                Genetics

                Comments

                Comment on this article