3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Development of Islet Organoids from H9 Human Embryonic Stem Cells in Biomimetic 3D Scaffolds

      1 , 1 , 2 , 1 , 2
      Stem Cells and Development
      Mary Ann Liebert Inc

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: found
          • Article: not found

          Generation of functional human pancreatic β cells in vitro.

          The generation of insulin-producing pancreatic β cells from stem cells in vitro would provide an unprecedented cell source for drug discovery and cell transplantation therapy in diabetes. However, insulin-producing cells previously generated from human pluripotent stem cells (hPSC) lack many functional characteristics of bona fide β cells. Here, we report a scalable differentiation protocol that can generate hundreds of millions of glucose-responsive β cells from hPSC in vitro. These stem-cell-derived β cells (SC-β) express markers found in mature β cells, flux Ca(2+) in response to glucose, package insulin into secretory granules, and secrete quantities of insulin comparable to adult β cells in response to multiple sequential glucose challenges in vitro. Furthermore, these cells secrete human insulin into the serum of mice shortly after transplantation in a glucose-regulated manner, and transplantation of these cells ameliorates hyperglycemia in diabetic mice. Copyright © 2014 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Reversal of diabetes with insulin-producing cells derived in vitro from human pluripotent stem cells.

            Transplantation of pancreatic progenitors or insulin-secreting cells derived from human embryonic stem cells (hESCs) has been proposed as a therapy for diabetes. We describe a seven-stage protocol that efficiently converts hESCs into insulin-producing cells. Stage (S) 7 cells expressed key markers of mature pancreatic beta cells, including MAFA, and displayed glucose-stimulated insulin secretion similar to that of human islets during static incubations in vitro. Additional characterization using single-cell imaging and dynamic glucose stimulation assays revealed similarities but also notable differences between S7 insulin-secreting cells and primary human beta cells. Nevertheless, S7 cells rapidly reversed diabetes in mice within 40 days, roughly four times faster than pancreatic progenitors. Therefore, although S7 cells are not fully equivalent to mature beta cells, their capacity for glucose-responsive insulin secretion and rapid reversal of diabetes in vivo makes them a promising alternative to pancreatic progenitor cells or cadaveric islets for the treatment of diabetes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Pancreatic endoderm derived from human embryonic stem cells generates glucose-responsive insulin-secreting cells in vivo.

              Development of a cell therapy for diabetes would be greatly aided by a renewable supply of human beta-cells. Here we show that pancreatic endoderm derived from human embryonic stem (hES) cells efficiently generates glucose-responsive endocrine cells after implantation into mice. Upon glucose stimulation of the implanted mice, human insulin and C-peptide are detected in sera at levels similar to those of mice transplanted with approximately 3,000 human islets. Moreover, the insulin-expressing cells generated after engraftment exhibit many properties of functional beta-cells, including expression of critical beta-cell transcription factors, appropriate processing of proinsulin and the presence of mature endocrine secretory granules. Finally, in a test of therapeutic potential, we demonstrate that implantation of hES cell-derived pancreatic endoderm protects against streptozotocin-induced hyperglycemia. Together, these data provide definitive evidence that hES cells are competent to generate glucose-responsive, insulin-secreting cells.
                Bookmark

                Author and article information

                Journal
                Stem Cells and Development
                Stem Cells and Development
                Mary Ann Liebert Inc
                1547-3287
                1557-8534
                March 15 2017
                March 15 2017
                : 26
                : 6
                : 394-404
                Affiliations
                [1 ]Department of Biomedical Engineering, College of Engineering, University of Arkansas, Fayetteville, Arkansas.
                [2 ]Department of Biomedical Engineering, Center of Biomanufacturing for Regenerative Medicine, Watson School of Engineering and Applied Science, Binghamton University, State University of New York (SUNY), Binghamton, New York.
                Article
                10.1089/scd.2016.0115
                27960594
                76c7c5a3-98a5-44e7-af4f-182d57d0e271
                © 2017

                https://www.liebertpub.com/nv/resources-tools/text-and-data-mining-policy/121/

                History

                Comments

                Comment on this article