20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      The largest known bear, Arctotherium angustidens, from the early Pleistocene Pampean region of Argentina: with a discussion of size and diet trends in bears

      ,
      Journal of Paleontology
      Paleontological Society

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The South American giant short-faced bear (Arctotherium angustidens Gervais and Ameghino, 1880) is one of five described Arctotherium species endemic to South America and it is known for being the earliest, largest, and most carnivorous member of the genus. Here we report an extraordinarily large A. angustidens individual exhumed from Ensenadan sediments (early to middle Pleistocene) at Buenos Aires Province, Argentina. Based on overall size, degree of epiphyseal fusion, and pathologies, this bear was an old-aged male that sustained serious injuries during life. Body mass of the bear is estimated and compared to other ursid species based on a series of allometric equations. To our knowledge, this specimen now represents the largest bear ever recorded. In light of this discovery, we discuss the evolution of body size in Arctotherium (from large-to-small) and compare this to bears that exhibited different evolutionary trajectories. We suggest that the larger size and more carnivorous nature of A. angustidens, compared to later members of the genus, may reflect the relative lack of other large carnivores and abundance of herbivores in South America just after the Great American Biotic Interchange.

          Related collections

          Most cited references18

          • Record: found
          • Abstract: found
          • Article: not found

          Mammalian evolution and the great american interchange.

          A reciprocal and apparently symmetrical interchange of land mammals between North and South America began about 3 million years ago, after the appearance of the Panamanian land bridge. The number of families of land mammals in South America rose from 32 before the interchange to 39 after it began, and then back to 35 at present. An equivalent number of families experienced a comparable rise and decline in North America during the same interval. These changes in diversity are predicted by the MacArthur-Wilson species equilibrium theory. The greater number of North American genera (24) initially entering South America than the reverse (12) is predicted by the proportions of reservoir genera on the two continents. However, a later imbalance caused by secondary immigrants (those which evolved from initial immigrants) is not expected from equilibrium theory.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Deja vu: the evolution of feeding morphologies in the Carnivora.

            The fossil record of the order Carnivora extends back at least 60 million years and documents a remarkable history of adaptive radiation characterized by the repeated, independent evolution of similar feeding morphologies in distinct clades. Within the order, convergence is apparent in the iterative appearance of a variety of ecomorphs, including cat-like, hyena-like, and wolf-like hypercarnivores, as well as a variety of less carnivorous forms, such as foxes, raccoons, and ursids. The iteration of similar forms has multiple causes. First, there are a limited number of ways to ecologically partition the carnivore niche, and second, the material properties of animal tissues (muscle, skin, bone) have not changed over the Cenozoic. Consequently, similar craniodental adaptations for feeding on different proportions of animal versus plant tissues evolve repeatedly. The extent of convergence in craniodental form can be striking, affecting skull proportions and overall shape, as well as dental morphology. The tendency to evolve highly convergent ecomorphs is most apparent among feeding extremes, such as sabertooths and bone-crackers where performance requirements tend to be more acute. A survey of the fossil record indicates that large hypercarnivores evolve frequently, often in response to ecological opportunity afforded by the decline or extinction of previously dominant hypercarnivorous taxa. While the evolution of large size and carnivory may be favored at the individual level, it can lead to a macroevolutionary ratchet, wherein dietary specialization and reduced population densities result in a greater vulnerability to extinction. As a result of these opposing forces, the fossil record of Carnivora is dominated by successive clades of hypercarnivores that diversify and decline, only to be replaced by new hypercarnivorous clades. This has produced a marvelous set of natural experiments in the evolution of similar ecomorphs, each of which start from phylogenetically and morphologically unique positions.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Dynamics of Pleistocene population extinctions in Beringian brown bears.

              The climatic and environmental changes associated with the last glaciation (90,000 to 10,000 years before the present; 90 to 10 ka B.P.) are an important example of the effects of global climate change on biological diversity. These effects were particularly marked in Beringia (northeastern Siberia, northwestern North America, and the exposed Bering Strait) during the late Pleistocene. To investigate the evolutionary impact of these events, we studied genetic change in the brown bear, Ursus arctos, in eastern Beringia over the past 60,000 years using DNA preserved in permafrost remains. A marked degree of genetic structure is observed in populations throughout this period despite local extinctions, reinvasions, and potential interspecies competition with the short-faced bear, Arctodus simus. The major phylogeographic changes occurred 35 to 21 ka B.P., before the glacial maximum, and little change is observed after this time. Late Pleistocene histories of mammalian taxa may be more complex than those that might be inferred from the fossil record or contemporary DNA sequences alone.
                Bookmark

                Author and article information

                Journal
                applab
                Journal of Paleontology
                J. Paleontol.
                Paleontological Society
                0022-3360
                1937-2337
                January 2011
                July 2015
                : 85
                : 01
                : 69-75
                Article
                10.1666/10-037.1
                76d2a11e-3e78-4eb0-8848-e4d984db70cf
                © 2011
                History

                Comments

                Comment on this article