29
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A Novel Tandem Reporter Quantifies RNA Polymerase II Termination in Mammalian Cells

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Making the correct choice between transcription elongation and transcription termination is essential to the function of RNA polymerase II, and fundamental to gene expression. This choice can be influenced by factors modifying the transcription complex, factors modifying chromatin, or signals mediated by the template or transcript. To aid in the study of transcription elongation and termination we have developed a transcription elongation reporter system that consists of tandem luciferase reporters flanking a test sequence of interest. The ratio of expression from the reporters provides a measure of the relative rates of successful elongation through the intervening sequence.

          Methodology/Principal Findings

          Size matched fragments containing the polyadenylation signal of the human β-actin gene (ACTB) and the human β-globin gene (HBB) were evaluated for transcription termination using this new ratiometric tandem reporter assay. Constructs bearing just 200 base pairs on either side of the consensus poly(A) addition site terminated 98% and 86% of transcription for ACTB and HBB sequences, respectively. The nearly 10-fold difference in read-through transcription between the two short poly(A) regions was eclipsed when additional downstream poly(A) sequence was included for each gene. Both poly(A) regions proved very effective at termination when 1100 base pairs were included, stopping 99.6% of transcription. To determine if part of the increased termination was simply due to the increased template length, we inserted several kilobases of heterologous coding sequence downstream of each poly(A) region test fragment. Unexpectedly, the additional length reduced the effectiveness of termination of HBB sequences 2-fold and of ACTB sequences 3- to 5-fold.

          Conclusions/Significance

          The tandem construct provides a sensitive measure of transcription termination in human cells. Decreased Xrn2 or Senataxin levels produced only a modest release from termination. Our data support overlap in allosteric and torpedo mechanisms of transcription termination and suggest that efficient termination is ensured by redundancy.

          Related collections

          Most cited references30

          • Record: found
          • Abstract: found
          • Article: not found

          In vivo dynamics of RNA polymerase II transcription.

          We imaged transcription in living cells using a locus-specific reporter system, which allowed precise, single-cell kinetic measurements of promoter binding, initiation and elongation. Photobleaching of fluorescent RNA polymerase II revealed several kinetically distinct populations of the enzyme interacting with a specific gene. Photobleaching and photoactivation of fluorescent MS2 proteins used to label nascent messenger RNAs provided sensitive elongation measurements. A mechanistic kinetic model that fits our data was validated using specific inhibitors. Polymerases elongated at 4.3 kilobases min(-1), much faster than previously documented, and entered a paused state for unexpectedly long times. Transcription onset was inefficient, with only 1% of polymerase-gene interactions leading to completion of an mRNA. Our systems approach, quantifying both polymerase and mRNA kinetics on a defined DNA template in vivo with high temporal resolution, opens new avenues for studying regulation of transcriptional processes in vivo.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            NELF, a multisubunit complex containing RD, cooperates with DSIF to repress RNA polymerase II elongation.

            DRB is a classic inhibitor of transcription elongation by RNA polymerase II (pol II). Since DRB generally affects class II genes, factors involved in this process must play fundamental roles in pol II elongation. Recently, two elongation factors essential for DRB action were identified, namely DSIF and P-TEFb. Here we describe the identification and purification from HeLa nuclear extract of a third protein factor required for DRB-sensitive transcription. This factor, termed negative elongation factor (NELF), cooperates with DSIF and strongly represses pol II elongation. This repression is reversed by P-TEFb-dependent phosphorylation of the pol II C-terminal domain. NELF is composed of five polypeptides, the smallest of which is identical to RD, a putative RNA-binding protein of unknown function. This study reveals a molecular mechanism for DRB action and a regulatory network of positive and negative elongation factors.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The yeast Rat1 exonuclease promotes transcription termination by RNA polymerase II.

              The carboxy-terminal domain (CTD) of the RNA polymerase II (RNApII) largest subunit consists of multiple heptapeptide repeats with the consensus sequence YSPTSPS. Different CTD phosphorylation patterns act as recognition sites for the binding of various messenger RNA processing factors, thereby coupling transcription and mRNA processing. Polyadenylation factors are co-transcriptionally recruited by phosphorylation of CTD serine 2 (ref. 2) and these factors are also required for transcription termination. RNApII transcribes past the poly(A) site, the RNA is cleaved by the polyadenylation machinery, and the RNA downstream of the cleavage site is degraded. Here we show that Rtt103 and the Rat1/Rai1 5' --> 3' exonuclease are localized at 3' ends of protein coding genes. In rat1-1 or rai1Delta cells, RNA 3' to polyadenylation sites is greatly stabilized and termination defects are seen at many genes. These findings support a model in which poly(A) site cleavage and subsequent degradation of the 3'-downstream RNA by Rat1 trigger transcription termination.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2009
                9 July 2009
                : 4
                : 7
                : e6193
                Affiliations
                [1]The Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States of America
                New Mexico State University, United States of America
                Author notes

                Conceived and designed the experiments: MCS EG. Performed the experiments: AB MCS SD JW. Analyzed the data: AB MCS EG. Contributed reagents/materials/analysis tools: AB MCS SD JW EG. Wrote the paper: AB MCS EG.

                Article
                09-PONE-RA-10428R1
                10.1371/journal.pone.0006193
                2702688
                19587781
                76ea7e7b-b0ac-4683-9369-5d6613d11973
                Banerjee et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 18 May 2009
                : 15 June 2009
                Page count
                Pages: 9
                Categories
                Research Article
                Molecular Biology
                Biochemistry/Transcription and Translation
                Cell Biology/Gene Expression
                Molecular Biology/Transcription Elongation

                Uncategorized
                Uncategorized

                Comments

                Comment on this article