11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      CRISPR-Cas9 nuclear dynamics and target recognition in living cells

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          How CRISPR Cas9–guide RNA complexes navigate the nucleus and interrogate the genome is not well understood. Ma et al. track these complexes in live cells and find that mutations in the guide seed region significantly reduced the complex’s target residence time, with a commensurate impairment of cleavage.

          Abstract

          The bacterial CRISPR-Cas9 system has been repurposed for genome engineering, transcription modulation, and chromosome imaging in eukaryotic cells. However, the nuclear dynamics of clustered regularly interspaced short palindromic repeats (CRISPR)–associated protein 9 (Cas9) guide RNAs and target interrogation are not well defined in living cells. Here, we deployed a dual-color CRISPR system to directly measure the stability of both Cas9 and guide RNA. We found that Cas9 is essential for guide RNA stability and that the nuclear Cas9–guide RNA complex levels limit the targeting efficiency. Fluorescence recovery after photobleaching measurements revealed that single mismatches in the guide RNA seed sequence reduce the target residence time from >3 h to as low as <2 min in a nucleotide identity- and position-dependent manner. We further show that the duration of target residence correlates with cleavage activity. These results reveal that CRISPR discriminates between genuine versus mismatched targets for genome editing via radical alterations in residence time.

          Related collections

          Most cited references15

          • Record: found
          • Abstract: found
          • Article: not found

          CRISPR interference (CRISPRi) for sequence-specific control of gene expression.

          Sequence-specific control of gene expression on a genome-wide scale is an important approach for understanding gene functions and for engineering genetic regulatory systems. We have recently described an RNA-based method, CRISPR interference (CRISPRi), for targeted silencing of transcription in bacteria and human cells. The CRISPRi system is derived from the Streptococcus pyogenes CRISPR (clustered regularly interspaced palindromic repeats) pathway, requiring only the coexpression of a catalytically inactive Cas9 protein and a customizable single guide RNA (sgRNA). The Cas9-sgRNA complex binds to DNA elements complementary to the sgRNA and causes a steric block that halts transcript elongation by RNA polymerase, resulting in the repression of the target gene. Here we provide a protocol for the design, construction and expression of customized sgRNAs for transcriptional repression of any gene of interest. We also provide details for testing the repression activity of CRISPRi using quantitative fluorescence assays and native elongating transcript sequencing. CRISPRi provides a simplified approach for rapid gene repression within 1-2 weeks. The method can also be adapted for high-throughput interrogation of genome-wide gene functions and genetic interactions, thus providing a complementary approach to RNA interference, which can be used in a wider variety of organisms.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Genome-wide analysis reveals characteristics of off-target sites bound by the Cas9 endonuclease.

            RNA-guided genome editing with the CRISPR-Cas9 system has great potential for basic and clinical research, but the determinants of targeting specificity and the extent of off-target cleavage remain insufficiently understood. Using chromatin immunoprecipitation and high-throughput sequencing (ChIP-seq), we mapped genome-wide binding sites of catalytically inactive Cas9 (dCas9) in HEK293T cells, in combination with 12 different single guide RNAs (sgRNAs). The number of off-target sites bound by dCas9 varied from ∼10 to >1,000 depending on the sgRNA. Analysis of off-target binding sites showed the importance of the PAM-proximal region of the sgRNA guiding sequence and that dCas9 binding sites are enriched in open chromatin regions. When targeted with catalytically active Cas9, some off-target binding sites had indels above background levels in a region around the ChIP-seq peak, but generally at lower rates than the on-target sites. Our results elucidate major determinants of Cas9 targeting, and we show that ChIP-seq allows unbiased detection of Cas9 binding sites genome-wide.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Efficient genome engineering in human pluripotent stem cells using Cas9 from Neisseria meningitidis.

              Genome engineering in human pluripotent stem cells (hPSCs) holds great promise for biomedical research and regenerative medicine. Recently, an RNA-guided, DNA-cleaving interference pathway from bacteria [the type II clustered, regularly interspaced, short palindromic repeats (CRISPR)-CRISPR-associated (Cas) pathway] has been adapted for use in eukaryotic cells, greatly facilitating genome editing. Only two CRISPR-Cas systems (from Streptococcus pyogenes and Streptococcus thermophilus), each with their own distinct targeting requirements and limitations, have been developed for genome editing thus far. Furthermore, limited information exists about homology-directed repair (HDR)-mediated gene targeting using long donor DNA templates in hPSCs with these systems. Here, using a distinct CRISPR-Cas system from Neisseria meningitidis, we demonstrate efficient targeting of an endogenous gene in three hPSC lines using HDR. The Cas9 RNA-guided endonuclease from N. meningitidis (NmCas9) recognizes a 5'-NNNNGATT-3' protospacer adjacent motif (PAM) different from those recognized by Cas9 proteins from S. pyogenes and S. thermophilus (SpCas9 and StCas9, respectively). Similar to SpCas9, NmCas9 is able to use a single-guide RNA (sgRNA) to direct its activity. Because of its distinct protospacer adjacent motif, the N. meningitidis CRISPR-Cas machinery increases the sequence contexts amenable to RNA-directed genome editing.
                Bookmark

                Author and article information

                Journal
                J Cell Biol
                J. Cell Biol
                jcb
                jcb
                The Journal of Cell Biology
                The Rockefeller University Press
                0021-9525
                1540-8140
                29 August 2016
                : 214
                : 5
                : 529-537
                Affiliations
                [1 ]Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605
                [2 ]RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01605
                [3 ]Department of Computer Science, University of Central Florida, Orlando, FL 32816
                Author notes
                Correspondence to Thoru Pederson: thoru.pederson@ 123456umassmed.edu
                [*]

                H. Ma and L.-C. Tu contributed equally to this paper.

                Author information
                http://orcid.org/0000-0002-2747-2193
                http://orcid.org/0000-0003-3363-8791
                http://orcid.org/0000-0002-3703-7806
                Article
                201604115
                10.1083/jcb.201604115
                5004447
                27551060
                76f4b1c0-1e22-49ff-ba0b-0f3921642dc8
                © 2016 Ma et al.

                This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 3.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/3.0/).

                History
                : 26 April 2016
                : 21 July 2016
                Funding
                Funded by: National Institutes of Health http://dx.doi.org/10.13039/100000002
                Award ID: 5 U01 EB021238-02
                Award ID: R01 GM102515
                Funded by: National Institutes of Health http://dx.doi.org/10.13039/100000002
                Award ID: U01 DA-040588-01
                Funded by: Amyotrophic Lateral Sclerosis Association http://dx.doi.org/10.13039/100000971
                Award ID: 16-LGCA-300
                Categories
                Research Articles
                Article
                31
                40
                27

                Cell biology
                Cell biology

                Comments

                Comment on this article