0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Antibiotic Exposure Has Sex-Dependent Effects on the Gut Microbiota and Metabolism of Short-Chain Fatty Acids and Amino Acids in Mice

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Accumulating evidence shows that the gut microbiota regulates host metabolism by producing a series of metabolites, such as amino acids, bile acids, fatty acids, and others. These metabolites have a positive or negative effect on host health. Antibiotic exposure can disrupt the gut microbiota and thereby affect host metabolism and physiology. However, there are a limited number of studies addressing whether antibiotic effects on the gut microbiota and host metabolism are sex dependent. In this study, we uncovered a sex-dependent difference in antibiotic effects on the gut microbiota and metabolome in colonic contents and tissues in mice. These findings reveal that sex-dependent effects need to be considered for antibiotic use in scientific research or clinical practice. Moreover, this study will also give an important direction for future use of antibiotics to modify the gut microbiome and host metabolism in a sex-specific manner.

          ABSTRACT

          The gut microbiota has the capability to regulate homeostasis of the host metabolism. Since antibiotic exposure can adversely affect the microbiome, we hypothesized that antibiotic effects on the gut microbiota and host metabolism are sex dependent. In this study, we examined the effects of antibiotic treatments, including vancomycin (Vanc) and ciprofloxacin-metronidazole (CiMe), on the gut microbiome and metabolome in colonic contents and tissues in both male and female mice. We found that the relative abundances and structural composition of Firmicutes were significantly reduced in female mice after both Vanc and CiMe treatments but in male mice only after treatment with Vanc. However, Vanc exposure considerably altered the relative abundances and structural composition of representatives of the Proteobacteria especially in male mice. The levels of short-chain fatty acids (SCFAs; acetate, butyrate, and propionate) in colonic contents and tissues were significantly decreased in female mice after both antibiotic treatments, while these reductions were detected in male mice only after Vanc treatment. However, another SCFA, formate, exhibited the opposite tendency in colonic tissues. Both antibiotic exposures significantly decreased the levels of alanine, branched-chain amino acids (BCAAs; leucine, isoleucine, and valine) and aromatic amino acids (AAAs; phenylalanine and tyrosine) in colonic contents of female mice but not in male mice. Additionally, female mice had much greater correlations between microbe and metabolite than male mice. These findings suggest that sex-dependent effects should be considered for antibiotic-induced modifications of the gut microbiota and host metabolism.

          IMPORTANCE Accumulating evidence shows that the gut microbiota regulates host metabolism by producing a series of metabolites, such as amino acids, bile acids, fatty acids, and others. These metabolites have a positive or negative effect on host health. Antibiotic exposure can disrupt the gut microbiota and thereby affect host metabolism and physiology. However, there are a limited number of studies addressing whether antibiotic effects on the gut microbiota and host metabolism are sex dependent. In this study, we uncovered a sex-dependent difference in antibiotic effects on the gut microbiota and metabolome in colonic contents and tissues in mice. These findings reveal that sex-dependent effects need to be considered for antibiotic use in scientific research or clinical practice. Moreover, this study will also give an important direction for future use of antibiotics to modify the gut microbiome and host metabolism in a sex-specific manner.

          Related collections

          Most cited references24

          • Record: found
          • Abstract: found
          • Article: not found

          FLASH: fast length adjustment of short reads to improve genome assemblies.

          Next-generation sequencing technologies generate very large numbers of short reads. Even with very deep genome coverage, short read lengths cause problems in de novo assemblies. The use of paired-end libraries with a fragment size shorter than twice the read length provides an opportunity to generate much longer reads by overlapping and merging read pairs before assembling a genome. We present FLASH, a fast computational tool to extend the length of short reads by overlapping paired-end reads from fragment libraries that are sufficiently short. We tested the correctness of the tool on one million simulated read pairs, and we then applied it as a pre-processor for genome assemblies of Illumina reads from the bacterium Staphylococcus aureus and human chromosome 14. FLASH correctly extended and merged reads >99% of the time on simulated reads with an error rate of <1%. With adequately set parameters, FLASH correctly merged reads over 90% of the time even when the reads contained up to 5% errors. When FLASH was used to extend reads prior to assembly, the resulting assemblies had substantially greater N50 lengths for both contigs and scaffolds. The FLASH system is implemented in C and is freely available as open-source code at http://www.cbcb.umd.edu/software/flash. t.magoc@gmail.com.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Elevated circulating branched chain amino acids are an early event in pancreatic adenocarcinoma development

            Most patients with pancreatic ductal adenocarcinoma (PDAC) are diagnosed with advanced disease and survive less than 12 months 1 . PDAC has been linked with obesity and glucose intolerance 2-4 , but whether changes in circulating metabolites are associated with early cancer progression is unknown. To better understand metabolic derangements associated with early disease, we profiled metabolites in prediagnostic plasma from pancreatic cancer cases and matched controls from four prospective cohort studies. We find that elevated plasma levels of branched chain amino acids (BCAAs) are associated with a greater than 2–fold increased risk of future pancreatic cancer diagnosis. This elevated risk was independent of known predisposing factors, with the strongest association observed among subjects with samples collected 2 to 5 years prior to diagnosis when occult disease is likely present. We show that plasma BCAAs are also elevated in mice with early stage pancreatic cancers driven by mutant Kras expression, and that breakdown of tissue protein accounts for the increase in plasma BCAAs that accompanies early stage disease. Together, these findings suggest that increased whole–body protein breakdown is an early event in development of PDAC.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Antibiotics as deep modulators of gut microbiota: between good and evil.

              The recent increase in our knowledge of human gut microbiota has changed our view on antibiotics. Antibiotics are, indeed, no longer considered only beneficial, but also potentially harmful drugs, as their abuse appears to play a role in the pathogenesis of several disorders associated with microbiota impairment (eg, Clostridium difficile infection or metabolic disorders). Both drug-related factors (such as antibiotic class, timing of exposure or route of administration) and host-related factors appear to influence the alterations of human gut microbiota produced by antibiotics. Nevertheless, antibiotics are nowadays considered a reliable therapy for some non-communicable disorders, including IBS or hepatic encephalopathy. Moreover, some antibiotics can also act positively on gut microbiota, providing a so-called 'eubiotic' effect, by increasing abundance of beneficial bacteria. Therefore, antibiotics appear to change, for better or worse, the nature of several disorders, including IBS, IBD, metabolic disorders or liver disease. This reviews aims to address the potential of antibiotics in the development of major non-communicable disorders associated with the alteration of gut microbiota and on newly discovered therapeutic avenues of antibiotics beyond the cure of infectious diseases.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                mSystems
                mSystems
                msys
                msys
                mSystems
                mSystems
                American Society for Microbiology (1752 N St., N.W., Washington, DC )
                2379-5077
                4 June 2019
                Jul-Aug 2019
                : 4
                : 4
                : e00048-19
                Affiliations
                [a ]Institute of Metabonomics & Medical NMR, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
                University of California, San Diego
                Author notes
                Address correspondence to Hong Zheng, 123zhenghong321@ 123456163.com .

                Citation Gao H, Shu Q, Chen J, Fan K, Xu P, Zhou Q, Li C, Zheng H. 2019. Antibiotic exposure has sex-dependent effects on the gut microbiota and metabolism of short-chain fatty acids and amino acids in mice. mSystems 4:e00048-19. https://doi.org/10.1128/mSystems.00048-19.

                Author information
                https://orcid.org/0000-0002-3401-721X
                Article
                mSystems00048-19
                10.1128/mSystems.00048-19
                6550365
                31164448
                76f5599c-dcc4-44f5-a9f6-950db747d6e2
                Copyright © 2019 Gao et al.

                This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license.

                History
                : 23 January 2019
                : 15 May 2019
                Page count
                Figures: 10, Tables: 0, Equations: 1, References: 71, Pages: 16, Words: 9411
                Funding
                Funded by: National Natural Science Foundation of China (NSFC), https://doi.org/10.13039/501100001809;
                Award ID: 81771386
                Award Recipient :
                Funded by: National Natural Science Foundation of China (NSFC), https://doi.org/10.13039/501100001809;
                Award ID: 21575105
                Award Recipient :
                Funded by: National Natural Science Foundation of China (NSFC), https://doi.org/10.13039/501100001809;
                Award ID: 21605115
                Award Recipient :
                Categories
                Research Article
                Host-Microbe Biology
                Custom metadata
                July/August 2019

                amino acid metabolism,antibiotic,microbiome,sex-dependent effect,short-chain fatty acid

                Comments

                Comment on this article