5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Cathelicidins PMAP-36, LL-37 and CATH-2 are similar peptides with different modes of action

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Host defense peptides (HDPs) play a pivotal role in innate immunity and have, in addition to antimicrobial activity, also important immunomodulatory functions. Bacteria are less likely to develop resistance against HDPs because these peptides target and kill bacteria in multiple ways, as well as modulate the immune system. Therefore, HDPs, and derivatives thereof, are promising alternatives to traditional antibiotics. Hardly anything is known about the immunomodulatory functions of porcine cathelicidin PMAP-36. In this study, we aimed to determine both antibacterial and immunomodulatory activities of PMAP-36 comparing the properties of PMAP-36 analogs with two well-studied peptides, human LL-37 and chicken CATH-2. Transmission electron microscopy revealed different killing mechanisms of E. coli for PMAP-36, CATH-2 and LL-37. LL-37 binds LPS very weakly in contrast to PMAP-36, but it inhibits LPS activation of macrophages the strongest. The first 11 amino acids of the N-terminal side of PMAP-36 are dispensable for E. coli killing, LPS-neutralization and binding. Deletion of four additional amino acids resulted in a strong decrease in activity. The activity of full length PMAP-36 was not affected by monomerization, whereas the shorter analogs require dimerization for proper immunomodulatory activity but not for their antibacterial activity.

          Related collections

          Most cited references40

          • Record: found
          • Abstract: found
          • Article: not found

          The human antimicrobial peptide LL-37 is a multifunctional modulator of innate immune responses.

          The role of LL-37, a human cationic antimicrobial peptide, in the immune system is not yet clearly understood. It is a widely expressed peptide that can be up-regulated during an immune response. In this report, we demonstrate that LL-37 is a potent antisepsis agent with the ability to inhibit macrophage stimulation by bacterial components such as LPS, lipoteichoic acid, and noncapped lipoarabinomannan. We also demonstrate that LL-37 protects mice against lethal endotoxemia. In addition to preventing macrophage activation by bacterial components, we hypothesized the LL-37 may also have direct effects on macrophage function. We therefore used gene expression profiling to identify macrophage functions that might be modulated by LL-37. These studies revealed that LL-37 directly up-regulates 29 genes and down-regulated another 20 genes. Among the genes predicted to be up-regulated by LL-37 were those encoding chemokines and chemokine receptors. Consistent with this, LL-37 up-regulated the expression of chemokines in macrophages and the mouse lung (monocyte chemoattractant protein 1), human A549 epithelial cells (IL-8), and whole human blood (monocyte chemoattractant protein 1 and IL-8), without stimulating the proinflammatory cytokine, TNFalpha. LL-37 also up-regulated the chemokine receptors CXCR-4, CCR2, and IL-8RB. These findings indicate that LL-37 may contribute to the immune response by limiting the damage caused by bacterial products and by recruiting immune cells to the site of infection so that they can clear the infection.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Modulation of the TLR-mediated inflammatory response by the endogenous human host defense peptide LL-37.

            The sole human cathelicidin peptide, LL-37, has been demonstrated to protect animals against endotoxemia/sepsis. Low, physiological concentrations of LL-37 ( or =50% in the presence of LL-37, demonstrating that the peptide altered gene expression in part by acting directly on the TLR-to-NF-kappaB pathway. LL-37 almost completely prevented the release of TNF-alpha and other cytokines by human PBMC following stimulation with LPS and other TLR2/4 and TLR9 agonists, but not with cytokines TNF-alpha or IL-1beta. Biochemical and inhibitor studies were consistent with a model whereby LL-37 modulated the inflammatory response to LPS/endotoxin and other agonists of TLR by a complex mechanism involving multiple points of intervention. We propose that the natural human host defense peptide LL-37 plays roles in the delicate balancing of inflammatory responses in homeostasis as well as in combating sepsis induced by certain TLR agonists.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mechanism of lipid bilayer disruption by the human antimicrobial peptide, LL-37.

              LL-37 is an amphipathic, alpha-helical, antimicrobial peptide. (15)N chemical shift and (15)N dipolar-shift spectroscopy of site-specifically labeled LL-37 in oriented lipid bilayers indicate that the amphipathic helix is oriented parallel to the surface of the bilayer. This surface orientation is maintained in both anionic and zwitterionic bilayers and at different temperatures and peptide concentrations, ruling out a barrel-stave mechanism for bilayer disruption by LL-37. In contrast, electrostatic factors, the type of lipid, and the presence of cholesterol do affect the extent to which LL-37 perturbs the lipids in the bilayer as observed with (31)P NMR. The (31)P spectra also show that micelles or other small, rapidly tumbling membrane fragments are not formed in the presence of LL-37, excluding a detergent-like mechanism. LL-37 does increase the lamellar to inverted hexagonal phase transition temperature of both PE model lipid systems and Escherichia coli lipids, demonstrating that it induces positive curvature strain in these environments. These results support a toroidal pore mechanism of lipid bilayer disruption by LL-37.
                Bookmark

                Author and article information

                Contributors
                m.r.scheenstra@uu.nl
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                18 March 2019
                18 March 2019
                2019
                : 9
                : 4780
                Affiliations
                ISNI 0000000120346234, GRID grid.5477.1, Department of Infectious Diseases and Immunology, Division of Molecular Host Defence, Faculty of Veterinary Medicine, , Utrecht University, ; Utrecht, The Netherlands
                Author information
                http://orcid.org/0000-0001-5476-3562
                http://orcid.org/0000-0002-8664-3730
                http://orcid.org/0000-0002-4931-5201
                Article
                41246
                10.1038/s41598-019-41246-6
                6423055
                30886247
                770349d6-fdfd-42e1-bb73-99673a95e60e
                © The Author(s) 2019

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 18 July 2018
                : 25 February 2019
                Funding
                Funded by: This work was financially supported by the Immuno Valley ALTANT ASIA2 program of the Dutch Ministry of Economic Affairs.
                Categories
                Article
                Custom metadata
                © The Author(s) 2019

                Uncategorized
                Uncategorized

                Comments

                Comment on this article