10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Strategies to improve the corrosion resistance of microarc oxidation (MAO) coated magnesium alloys for degradable implants: Prospects and challenges

      , ,

      Progress in Materials Science

      Elsevier BV

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references 273

          • Record: found
          • Abstract: not found
          • Article: not found

          Biodegradable polymers as biomaterials

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Synthetic biodegradable polymers as orthopedic devices.

            Polymer scientists, working closely with those in the device and medical fields, have made tremendous advances over the past 30 years in the use of synthetic materials in the body. In this article we will focus on properties of biodegradable polymers which make them ideally suited for orthopedic applications where a permanent implant is not desired. The materials with the greatest history of use are the poly(lactides) and poly(glycolides), and these will be covered in specific detail. The chemistry of the polymers, including synthesis and degradation, the tailoring of properties by proper synthetic controls such as copolymer composition, special requirements for processing and handling, and mechanisms of biodegradation will be covered. An overview of biocompatibility and approved devices of particular interest in orthopedics are also covered.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The history of biodegradable magnesium implants: a review.

               Frank Witte (2010)
              Today, more than 200years after the first production of metallic magnesium by Sir Humphry Davy in 1808, biodegradable magnesium-based metal implants are currently breaking the paradigm in biomaterial science to develop only highly corrosion resistant metals. This groundbreaking approach to temporary metallic implants is one of the latest developments in biomaterials science that is being rediscovered. It is a challenging topic, and several secrets still remain that might revolutionize various biomedical implants currently in clinical use. Magnesium alloys were investigated as implant materials long ago. A very early clinical report was given in 1878 by the physician Edward C. Huse. He used magnesium wires as ligature for bleeding vessels. Magnesium alloys for clinical use were explored during the last two centuries mainly by surgeons with various clinical backgrounds, such as cardiovascular, musculoskeletal and general surgery. Nearly all patients benefited from the treatment with magnesium implants. Although most patients experienced subcutaneous gas cavities caused by rapid implant corrosion, most patients had no pain and almost no infections were observed during the postoperative follow-up. This review critically summarizes the in vitro and in vivo knowledge and experience that has been reported on the use of magnesium and its alloys to advance the field of biodegradable metals. Copyright (c) 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Progress in Materials Science
                Progress in Materials Science
                Elsevier BV
                00796425
                March 2014
                March 2014
                : 60
                :
                : 1-71
                Article
                10.1016/j.pmatsci.2013.08.002
                © 2014

                Comments

                Comment on this article