23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Obesity Takes Its Toll on Visceral Pain: High-Fat Diet Induces Toll-Like Receptor 4-Dependent Visceral Hypersensitivity

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Exposure to high-fat diet induces both, peripheral and central alterations in TLR4 expression. Moreover, functional TLR4 is required for the development of high-fat diet-induced obesity. Recently, central alterations in TLR4 expression have been associated with the modulation of visceral pain. However, it remains unknown whether there is a functional interaction between the role of TLR4 in diet-induced obesity and in visceral pain. In the present study we investigated the impact of long-term exposure to high-fat diet on visceral pain perception and on the levels of TLR4 and Cd11b (a microglial cell marker) protein expression in the prefrontal cortex (PFC) and hippocampus. Peripheral alterations in TLR4 were assessed following the stimulation of spleenocytes with the TLR4-agonist LPS. Finally, we evaluated the effect of blocking TLR4 on visceral nociception, by administering TAK-242, a selective TLR4-antagonist. Our results demonstrated that exposure to high-fat diet induced visceral hypersensitivity. In parallel, enhanced TLR4 expression and microglia activation were found in brain areas related to visceral pain, the PFC and the hippocampus. Likewise, peripheral TLR4 activity was increased following long-term exposure to high-fat diet, resulting in an increased level of pro-inflammatory cytokines. Finally, TLR4 blockage counteracted the hyperalgesic phenotype present in mice fed on high-fat diet. Our data reveal a role for TLR4 in visceral pain modulation in a model of diet-induced obesity, and point to TLR4 as a potential therapeutic target for the development of drugs to treat visceral hypersensitivity present in pathologies associated to fat diet consumption.

          Related collections

          Most cited references50

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          High Fat Diet-Induced Gut Microbiota Exacerbates Inflammation and Obesity in Mice via the TLR4 Signaling Pathway

          Background & Aims While it is widely accepted that obesity is associated with low-grade systemic inflammation, the molecular origin of the inflammation remains unknown. Here, we investigated the effect of endotoxin-induced inflammation via TLR4 signaling pathway at both systemic and intestinal levels in response to a high-fat diet. Methods C57BL/6J and TLR4-deficient C57BL/10ScNJ mice were maintained on a low-fat (10 kcal % fat) diet (LFD) or a high–fat (60 kcal % fat) diet (HFD) for 8 weeks. Results HFD induced macrophage infiltration and inflammation in the adipose tissue, as well as an increase in the circulating proinflammatory cytokines. HFD increased both plasma and fecal endotoxin levels and resulted in dysregulation of the gut microbiota by increasing the Firmicutes to Bacteriodetes ratio. HFD induced the growth of Enterobecteriaceae and the production of endotoxin in vitro. Furthermore, HFD induced colonic inflammation, including the increased expression of proinflammatory cytokines, the induction of Toll-like receptor 4 (TLR4), iNOS, COX-2, and the activation of NF-κB in the colon. HFD reduced the expression of tight junction-associated proteins claudin-1 and occludin in the colon. HFD mice demonstrated higher levels of Akt and FOXO3 phosphorylation in the colon compared to the LFD mice. While the body weight of HFD-fed mice was significantly increased in both TLR4-deficient and wild type mice, the epididymal fat weight and plasma endotoxin level of HFD-fed TLR4-deficient mice were 69% and 18% of HFD-fed wild type mice, respectively. Furthermore, HFD did not increase the proinflammatory cytokine levels in TLR4-deficient mice. Conclusions HFD induces inflammation by increasing endotoxin levels in the intestinal lumen as well as in the plasma by altering the gut microbiota composition and increasing its intestinal permeability through the induction of TLR4, thereby accelerating obesity.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Composition and energy harvesting capacity of the gut microbiota: relationship to diet, obesity and time in mouse models.

            Increased efficiency of energy harvest, due to alterations in the gut microbiota (increased Firmicutes and decreased Bacteroidetes), has been implicated in obesity in mice and humans. However, a causal relationship is unproven and contributory variables include diet, genetics and age. Therefore, we explored the effect of a high-fat (HF) diet and genetically determined obesity (ob/ob) for changes in microbiota and energy harvesting capacity over time. Seven-week-old male ob/ob mice were fed a low-fat diet and wild-type mice were fed either a low-fat diet or a HF-diet for 8 weeks (n=8/group). They were assessed at 7, 11 and 15 weeks of age for: fat and lean body mass (by NMR); faecal and caecal short-chain fatty acids (SCFA, by gas chromatography); faecal energy content (by bomb calorimetry) and microbial composition (by metagenomic pyrosequencing). A progressive increase in Firmicutes was confirmed in both HF-fed and ob/ob mice reaching statistical significance in the former, but this phylum was unchanged over time in the lean controls. Reductions in Bacteroidetes were also found in ob/ob mice. However, changes in the microbiota were dissociated from markers of energy harvest. Thus, although the faecal energy in the ob/ob mice was significantly decreased at 7 weeks, and caecal SCFA increased, these did not persist and faecal acetate diminished over time in both ob/ob and HF-fed mice, but not in lean controls. Furthermore, the proportion of the major phyla did not correlate with energy harvest markers. The relationship between the microbial composition and energy harvesting capacity is more complex than previously considered. While compositional changes in the faecal microbiota were confirmed, this was primarily a feature of high-fat feeding rather than genetically induced obesity. In addition, changes in the proportions of the major phyla were unrelated to markers of energy harvest which changed over time. The possibility of microbial adaptation to diet and time should be considered in future studies.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Novel signal transduction pathway utilized by extracellular HSP70: role of toll-like receptor (TLR) 2 and TLR4.

              Recent studies have initiated a paradigm shift in the understanding of the function of heat shock proteins (HSP). It is now clear that HSP can and do exit mammalian cells, interact with cells of the immune system, and exert immunoregulatory effects. We recently demonstrated that exogenously added HSP70 possesses potent cytokine activity, with the ability to bind with high affinity to the plasma membrane, elicit a rapid intracellular Ca(2+) flux, activate NF-kappaB, and up-regulate the expression of pro-inflammatory cytokines in human monocytes. Here for the first time, we report that HSP70-induced proinflammatory cytokine production is mediated via the MyD88/IRAK/NF-kappaB signal transduction pathway and that HSP70 utilizes both TLR2 (receptor for Gram-positive bacteria) and TLR4 (receptor for Gram-negative bacteria) to transduce its proinflammatory signal in a CD14-dependent fashion. These studies now pave the way for the development of highly effective pharmacological or molecular tools that will either up-regulate or suppress HSP70-induced functions in conditions where HSP70 effects are desirable (cancer) or disorders where HSP70 effects are undesirable (arthritis and arteriosclerosis).
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, CA USA )
                1932-6203
                9 May 2016
                2016
                : 11
                : 5
                : e0155367
                Affiliations
                [1 ]APC Microbiome Institute, University College Cork, Cork, Ireland
                [2 ]School of Pharmacy, University College Cork, Cork, Ireland
                [3 ]Department of Psychiatry & Neurobehavioural Science, University College Cork, Cork, Ireland
                [4 ]Department of Anatomy & Neuroscience, University College Cork, Cork, Ireland
                Monash University, AUSTRALIA
                Author notes

                Competing Interests: The APC Microbiome Institute has conducted studies in collaboration with several companies including GSK, Pfizer, Cremo, Suntory, Wyeth and Mead Johnson. TGD has until recently been on the Board of Alimentary Health. The authors have spoken at meetings sponsored by food and pharmaceutical companies. This does not alter the authors' adherence to PLOS ONE policies on sharing data and materials.

                Conceived and designed the experiments: MT BCF JFC TGD. Performed the experiments: MT BCF. Analyzed the data: MT BCF. Contributed reagents/materials/analysis tools: MT BCF. Wrote the paper: MT BCF JFC TGD.

                Article
                PONE-D-16-03324
                10.1371/journal.pone.0155367
                4861320
                27159520
                770b0ad5-1dac-4f0b-adbb-c045596c508c
                © 2016 Tramullas et al

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 24 January 2016
                : 27 April 2016
                Page count
                Figures: 5, Tables: 0, Pages: 15
                Funding
                Funded by: funder-id http://dx.doi.org/10.13039/501100001602, Science Foundation Ireland;
                Award ID: SFI/12/RC/2273
                Funded by: Health Research Board of Ireland
                Award ID: HRA_POR/2011/23
                Funded by: Health Research Board of Ireland
                Award ID: HRA_POR/2012/32
                Funded by: European Community’s Seventh Framework Programme Grant My New Gut
                Award ID: FP7/2007-2013
                The authors are supported in part by Science Foundation Ireland in the form of a centre grant (APC Microbiome) under (Grant Number SFI/12/RC/2273); by the Health Research Board of Ireland (Grant Numbers HRA_POR/2011/23 and HRA_POR/2012/32) and received funding from the European Community’s Seventh Framework Programme Grant My New Gut under Grant Agreement No. FP7/2007-2013. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology and Life Sciences
                Nutrition
                Diet
                Medicine and Health Sciences
                Nutrition
                Diet
                Biology and Life Sciences
                Immunology
                Immune System Proteins
                Immune Receptors
                Toll-like Receptors
                Medicine and Health Sciences
                Immunology
                Immune System Proteins
                Immune Receptors
                Toll-like Receptors
                Biology and Life Sciences
                Biochemistry
                Proteins
                Immune System Proteins
                Immune Receptors
                Toll-like Receptors
                Biology and Life Sciences
                Cell Biology
                Signal Transduction
                Immune Receptors
                Toll-like Receptors
                Biology and Life Sciences
                Physiology
                Physiological Parameters
                Body Weight
                Obesity
                Medicine and Health Sciences
                Physiology
                Physiological Parameters
                Body Weight
                Obesity
                Medicine and Health Sciences
                Clinical Medicine
                Clinical Immunology
                Hypersensitivity
                Biology and Life Sciences
                Immunology
                Clinical Immunology
                Hypersensitivity
                Medicine and Health Sciences
                Immunology
                Clinical Immunology
                Hypersensitivity
                Research and Analysis Methods
                Model Organisms
                Animal Models
                Mouse Models
                Biology and Life Sciences
                Anatomy
                Brain
                Prefrontal Cortex
                Medicine and Health Sciences
                Anatomy
                Brain
                Prefrontal Cortex
                Biology and Life Sciences
                Anatomy
                Brain
                Hippocampus
                Medicine and Health Sciences
                Anatomy
                Brain
                Hippocampus
                Biology and Life Sciences
                Physiology
                Immune Physiology
                Spleen
                Medicine and Health Sciences
                Physiology
                Immune Physiology
                Spleen
                Custom metadata
                All relevant data are within the paper.

                Uncategorized
                Uncategorized

                Comments

                Comment on this article