8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Characterization of equine hyalocytes: their immunohistochemical properties, morphologies and distribution

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In horse, the characterizations of hyalocytes under the steady state are still unclear. Therefore, we investigated characterizations of hyalocytes in normal equine eyes by their immunohistochemical phenotype, histomorphology and distribution. Thirty-one eyes from 18 horses, divided into 4 groups (G) by age, were used: early (G1) and late gestation (G2) fetuses, 1- to 3-year-old (G3) and 8- to 24-year-old (G4) horses. Equine hyalocytes were histologically classified into 4 types, and they immunohistochemically expressed MHC II and CD163. Hyalocytes were detected on and/or around ciliary processes and pars plana in G2, G3 and G4, but were not located on retina and optic papilla. A significant increase in distribution was found between G2 and both G3 and G4, and the largest distribution was found at ciliary processes in these groups. Equine hyalocytes were characterized as residential ocular macrophage and MHC II antigen-bearing cell, accompanied by a pleomorphic appearance and located in the contiguous ciliary body. Our data provided characterizations of hyalocytes in normal equine eyes and may well contribute to improving the understanding of pathogenesis of equine ocular disease.

          Related collections

          Most cited references24

          • Record: found
          • Abstract: found
          • Article: not found

          The macrophage scavenger receptor CD163.

          Mature tissue macrophages form a first line of defense to recognize and eliminate potential pathogens; these specialized cells are capable of phagocytosis, degradation of self and foreign materials, establishment of cell-cell interactions, and the production of inflammatory mediators. Mature tissue macrophages express a variety of receptors, including the scavenger receptor cystein-rich (SRCR) superfamily members. CD163 is a member of the SRCR family class B and is expressed on most subpopulations of mature tissue macrophages. The best characterized function of CD163, which is essentially a homeostatic one, is related to the binding of Hemoglobin:Haptoglobin complexes. Furthermore, it has been suggested that CD163 positive macrophages or the soluble form of CD163 plays a role in the resolution of inflammation, as they are found in high numbers in inflamed tissue.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Age-dependent accumulation of lipofuscin in perivascular and subretinal microglia in experimental mice.

            Fundus autofluorescence (AF) imaging by confocal scanning laser ophthalmoscopy has been widely used by ophthalmologists in the diagnosis/monitoring of various retinal disorders. It is believed that fundus AF is derived from lipofuscin in retinal pigment epithelial (RPE) cells; however, direct clinicopathological correlation has not been possible in humans. We examined fundus AF by confocal scanning laser ophthalmoscopy and confocal microscopy in normal C57BL/6 mice of different ages. Increasingly strong AF signals were observed with age in the neuroretina and subretinal/RPE layer by confocal scanning laser ophthalmoscopy. Unlike fundus AF detected in normal human subjects, mouse fundus AF appeared as discrete foci distributed throughout the retina. Most of the AF signals in the neuroretina were distributed around retinal vessels. Confocal microscopy of retinal and choroid/RPE flat mounts demonstrated that most of the AF signals were derived from Iba-1+ perivascular and subretinal microglia. An age-dependent accumulation of Iba-1+ microglia at the subretinal space was observed. Lipofuscin granules were detected in large numbers in subretinal microglia by electron microscopy. The number of AF+ microglia and the amount of AF granules/cell increased with age. AF granules/lipofuscin were also observed in RPE cells in mice older than 12 months, but the number of AF+ RPE cells was very low (1.48 mm(-2) and 5.02 mm(-2) for 12 and 24 months, respectively) compared to the number of AF+ microglial cells (20.63 mm(-2) and 76.36 mm(-2) for 6 and 24 months, respectively). The fluorescence emission fingerprints of AF granules in subretinal microglia were the same as those in RPE cells. Our observation suggests that perivascular and subretinal microglia are the main cells producing lipofuscin in normal aged mouse retina and are responsible for in vivo fundus AF. Microglia may play an important role in retinal aging and age-related retinal diseases.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              CD163

                Bookmark

                Author and article information

                Journal
                J Vet Med Sci
                J. Vet. Med. Sci
                JVMS
                The Journal of Veterinary Medical Science
                The Japanese Society of Veterinary Science
                0916-7250
                1347-7439
                18 February 2016
                June 2016
                : 78
                : 6
                : 937-942
                Affiliations
                [1) ]Department of Veterinary Pathology, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido 069–8501, Japan
                [2) ]Department of Veterinary Microanatomy, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido 069–8501, Japan
                Author notes
                [* ]Correspondence to: Taniyama, H., Department of Veterinary Pathology, School of Veterinary Medicine, Rakuno Gakuen University, 582 Bunkyodai-Midorimachi, Ebetsu, Hokkaido 069–8501, Japan. e-mail: taniyama@ 123456rakuno.ac.jp
                Article
                15-0511
                10.1292/jvms.15-0511
                4937152
                26888584
                770f1b97-24bc-410e-981c-3328a4adbc4d
                ©2016 The Japanese Society of Veterinary Science

                This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives (by-nc-nd) License.

                History
                : 01 September 2015
                : 02 February 2016
                Categories
                Pathology
                Full Paper

                ciliary body,horse,hyalocytes,vitreous cortex
                ciliary body, horse, hyalocytes, vitreous cortex

                Comments

                Comment on this article