8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Hypoxic preconditioning attenuates necroptotic neuronal death induced by global cerebral ischemia via Drp1‐dependent signaling pathway mediated by CaMKIIα inactivation in adult rats

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          <p class="first" id="d4698770e178">Hypoxic preconditioning (HPC) alleviates the selective and delayed neuronal death in the hippocampal CA1 region induced by transient global cerebral ischemia (tGCI). This type of cell death may include different programmed cell death mechanisms, namely, apoptosis and necroptosis. Although apoptotic signaling is well defined, the mechanisms that underlie neuronal necroptosis are yet to be fully elucidated. In this study, we investigated whether HPC protects neurons from cerebral ischemia-induced necroptosis. We observed that tGCI up-regulated the expression of receptor-interacting protein (RIP) 3 and increased the interaction of RIP1-RIP3 in CA1 at the early stage of reperfusion. The pretreatment with HPC or necrostatin-1 decreased the expression of RIP3 and the formation of RIP1-RIP3 after tGCI. We also found that HPC decreased the expression and the activity of caspase-8 in CA1 after tGCI, and notably, the pretreatment with Z-VAD-FMK, a pan-caspase inhibitor, did not trigger necroptosis but attenuated the tGCI-induced neuronal damage. Furthermore, we demonstrated that HPC decreased the activation of calcium-calmodulin kinase (CaMK) IIα and the interaction of RIP1 and CaMKIIα induced by tGCI. Intriguingly, the pretreatment with a CaMKs inhibitor KN-93 before tGCI resulted in significantly reduced RIP1-3 interaction and tGCI-induced neuronal damage. Finally, we ascertained that HPC prevented the dephosphorylation of dynamin-related protein 1 (Drp1)-Ser637 (serine 637) and inhibited the translocation of Drp1 to mitochondria induced by tGCI. Importantly, the treatment with a Drp1 inhibitor Mdivi-1 or necrostatin-1 before tGCI also abolished Drp1 dephosphorylation at Ser637 and mitochondrial translocation. Taken together, our results highlight that HPC attenuates necroptotic neuronal death induced by tGCI via Drp1-dependent mitochondrial signaling pathways mediated by CaMKIIα inactivation.-Zhan, L., Lu, Z., Zhu, X., Xu, W., Li, L., Li, X., Chen, S., Sun, W., Xu, E. Hypoxic preconditioning attenuates necroptotic neuronal death induced by global cerebral ischemia via Drp1-dependent signaling pathway mediated by CaMKIIα inactivation in adult rats. </p>

          Related collections

          Most cited references3

          • Record: found
          • Abstract: found
          • Article: not found

          Receptor interacting protein kinase-3 determines cellular necrotic response to TNF-alpha.

          Smac mimetics induce apoptosis synergistically with TNF-alpha by triggering the formation of a caspase-8-activating complex containing receptor interacting protein kinase-1 (RIPK1). Caspase inhibitors block this form of apoptosis in many types of cells. However, in several other cell lines, caspase inhibitors switch the apoptotic response to necrosis. A genome wide siRNA screen revealed another member of the RIP kinase family, RIP3, to be required for necrosis. The expression of RIP3 in different cell lines correlates with their responsiveness to necrosis induction. The kinase activity of RIP3 is essential for necrosis execution. Upon induction of necrosis, RIP3 is recruited to RIPK1 to form a necrosis-inducing complex. Embryonic fibroblasts from RIP3 knockout mice are resistant to necrosis and RIP3 knockout animals are devoid of inflammation inflicted tissue damage in an acute pancreatitis model. These data indicate RIP3 as the determinant for cellular necrosis in response to TNF-alpha family of death-inducing cytokines.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Fas triggers an alternative, caspase-8-independent cell death pathway using the kinase RIP as effector molecule.

            Cell death is achieved by two fundamentally different mechanisms: apoptosis and necrosis. Apoptosis is dependent on caspase activation, whereas the caspase-independent necrotic signaling pathway remains largely uncharacterized. We show here that Fas kills activated primary T cells efficiently in the absence of active caspases, which results in necrotic morphological changes and late mitochondrial damage but no cytochrome c release. This Fas ligand-induced caspase-independent death is absent in T cells that are deficient in either Fas-associated death domain (FADD) or receptor-interacting protein (RIP). RIP is also required for necrotic death induced by tumor necrosis factor (TNF) and TNF-related apoptosis-inducing ligand (TRAIL). In contrast to its role in nuclear factor kappa B activation, RIP requires its own kinase activity for death signaling. Thus, Fas, TRAIL and TNF receptors can initiate cell death by two alternative pathways, one relying on caspase-8 and the other dependent on the kinase RIP.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Structure-function of the multifunctional Ca2+/calmodulin-dependent protein kinase II.

              Ca2+/calmodulin (CaM)-dependent protein kinase (CaMKII) is a ubiquitous mediator of Ca2+-linked signalling that phosphorylates a wide range of substrates to co-ordinate and regulate Ca2+-mediated alterations in cellular function. The transmission of information by the kinase from extracellular stimuli and the intracellular Ca2+ rise is not passive. Rather, its multimeric structure and autoregulation enable this enzyme to participate actively in the sensitivity, timing and location of its action. CaMKII can: (i) be activated in a Ca2+-spike frequency-dependent manner; (ii) become independent of its initial Ca2+/CaM activators; and (iii) undergo a 'molecular switch-like' behaviour, which is crucial for certain forms of learning and memory. CaMKII is derived from a family of four homologous but distinct genes, with over 30 alternatively spliced isoforms described at present. These isoforms possess diverse developmental and anatomical expression patterns, as well as subcellular localization. Six independent catalytic/autoregulatory domains are connected by a narrow stalk-like appendage to each hexameric ring within the dodecameric structure. Ca2+/CaM binding activates the enzyme by disinhibiting the autoregulatory domain; this process initiates an intra-holoenzyme autophosphorylation reaction that induces complex changes in the enzyme's sensitivity to Ca2+/CaM, including the generation of Ca2+/CaM-independent (autonomous) activity and marked increase in affinity for CaM. The role of CaMKII in Ca2+ signal transduction is shaped by its autoregulation, isoenzymic type and subcellular localization. The molecular determinants and mechanisms producing these processes are discussed as they relate to the structure-function of this multifunctional protein kinase.
                Bookmark

                Author and article information

                Journal
                The FASEB Journal
                FASEB j.
                Wiley
                0892-6638
                1530-6860
                August 08 2018
                January 2019
                August 27 2018
                January 2019
                : 33
                : 1
                : 1313-1329
                Affiliations
                [1 ]Key Laboratory of Neurogenetics and Channelopathies of Guangdong ProvinceMinistry of Education Guangzhou China
                [2 ]Institute of NeurosciencesSecond Affiliated HospitalGuangzhou Medical University Guangzhou China
                [3 ]Department of NeurologySecond Affiliated HospitalGuangzhou Medical University Guangzhou China
                [4 ]Department of NeurologyAffiliated Brain Hospital of Guangzhou Medical UniversityGuangzhou Huai Hospital Guangzhou China
                Article
                10.1096/fj.201800111RR
                30148677
                7720c6b7-bced-4b67-8b73-598ae827d29e
                © 2019

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article