6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Macro- and Microphase Separated Protein-Polyelectrolyte Complexes: Design Parameters and Current Progress

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Protein-containing polyelectrolyte complexes (PECs) are a diverse class of materials, composed of two or more oppositely charged polyelectrolytes that condense and phase separate near overall charge neutrality. Such phase-separation can take on a variety of morphologies from macrophase separated liquid condensates, to solid precipitates, to monodispersed spherical micelles. In this review, we present an overview of recent advances in protein-containing PECs, with an overall goal of defining relevant design parameters for macro- and microphase separated PECs. For both classes of PECs, the influence of protein characteristics, such as surface charge and patchiness, co-polyelectrolyte characteristics, such as charge density and structure, and overall solution characteristics, such as salt concentration and pH, are considered. After overall design features are established, potential applications in food processing, biosensing, drug delivery, and protein purification are discussed and recent characterization techniques for protein-containing PECs are highlighted.

          Related collections

          Most cited references155

          • Record: found
          • Abstract: found
          • Article: not found

          DLS and zeta potential - What they are and what they are not?

          Adequate characterization of NPs (nanoparticles) is of paramount importance to develop well defined nanoformulations of therapeutic relevance. Determination of particle size and surface charge of NPs are indispensable for proper characterization of NPs. DLS (dynamic light scattering) and ZP (zeta potential) measurements have gained popularity as simple, easy and reproducible tools to ascertain particle size and surface charge. Unfortunately, on practical grounds plenty of challenges exist regarding these two techniques including inadequate understanding of the operating principles and dealing with critical issues like sample preparation and interpretation of the data. As both DLS and ZP have emerged from the realms of physical colloid chemistry - it is difficult for researchers engaged in nanomedicine research to master these two techniques. Additionally, there is little literature available in drug delivery research which offers a simple, concise account on these techniques. This review tries to address this issue while providing the fundamental principles of these techniques, summarizing the core mathematical principles and offering practical guidelines on tackling commonly encountered problems while running DLS and ZP measurements. Finally, the review tries to analyze the relevance of these two techniques from translatory perspective.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Theory of self-assembly of hydrocarbon amphiphiles into micelles and bilayers

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Design and development of polymers for gene delivery.

              The lack of safe and efficient gene-delivery methods is a limiting obstacle to human gene therapy. Synthetic gene-delivery agents, although safer than recombinant viruses, generally do not possess the required efficacy. In recent years, a variety of effective polymers have been designed specifically for gene delivery, and much has been learned about their structure-function relationships. With the growing understanding of polymer gene-delivery mechanisms and continued efforts of creative polymer chemists, it is likely that polymer-based gene-delivery systems will become an important tool for human gene therapy.
                Bookmark

                Author and article information

                Journal
                Polymers (Basel)
                Polymers (Basel)
                polymers
                Polymers
                MDPI
                2073-4360
                29 March 2019
                April 2019
                : 11
                : 4
                : 578
                Affiliations
                Department of Chemical Engineering, Columbia University, New York, NY 10027, USA; jmh2301@ 123456columbia.edu (J.M.H.); rak2172@ 123456columbia.edu (R.A.K.)
                Author notes
                [* ]Correspondence: aco2134@ 123456columbia.edu
                [†]

                These authors contributed equally to this work.

                Article
                polymers-11-00578
                10.3390/polym11040578
                6523202
                30960562
                77211e94-5092-4dd6-8627-00bcfaadf50d
                © 2019 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 28 February 2019
                : 23 March 2019
                Categories
                Review

                polyelectrolytes,complex coacervation,protein materials,phase separation,micelles

                Comments

                Comment on this article