1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Efficient cavity control with SNAP gates

      Preprint
      , , ,

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Microwave cavities coupled to superconducting qubits have been demonstrated to be a promising platform for quantum information processing. A major challenge in this setup is to realize universal control over the cavity. A promising approach are selective number-dependent arbitrary phase (SNAP) gates combined with cavity displacements. It has been proven that this is a universal gate set, but a central question remained open so far: how can a given target operation be realized efficiently with a sequence of these operations. In this work, we present a practical scheme to address this problem. It involves a hierarchical strategy to insert new gates into a sequence, followed by a co-optimization of the control parameters, which generates short high-fidelity sequences. For a broad range of experimentally relevant applications, we find that they can be implemented with 3 to 4 SNAP gates, compared to up to 50 with previously known techniques.

          Related collections

          Author and article information

          Journal
          29 April 2020
          Article
          2004.14256
          772ac9e5-da13-4bd6-8298-c0639cf4406f

          http://arxiv.org/licenses/nonexclusive-distrib/1.0/

          Custom metadata
          9 pages, 4 figures
          quant-ph

          Quantum physics & Field theory
          Quantum physics & Field theory

          Comments

          Comment on this article