74
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Chronic Glutamate Toxicity in Neurodegenerative Diseases—What is the Evidence?

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Together with aspartate, glutamate is the major excitatory neurotransmitter in the brain. Glutamate binds and activates both ligand-gated ion channels (ionotropic glutamate receptors) and a class of G-protein coupled receptors (metabotropic glutamate receptors). Although the intracellular glutamate concentration in the brain is in the millimolar range, the extracellular glutamate concentration is kept in the low micromolar range by the action of excitatory amino acid transporters that import glutamate and aspartate into astrocytes and neurons. Excess extracellular glutamate may lead to excitotoxicity in vitro and in vivo in acute insults like ischemic stroke via the overactivation of ionotropic glutamate receptors. In addition, chronic excitotoxicity has been hypothesized to play a role in numerous neurodegenerative diseases including amyotrophic lateral sclerosis, Alzheimer's disease and Huntington's disease. Based on this hypothesis, a good deal of effort has been devoted to develop and test drugs that either inhibit glutamate receptors or decrease extracellular glutamate. In this review, we provide an overview of the different pathways that are thought to lead to an over-activation of the glutamatergic system and glutamate toxicity in neurodegeneration. In addition, we summarize the available experimental evidence for glutamate toxicity in animal models of neurodegenerative diseases.

          Related collections

          Most cited references216

          • Record: found
          • Abstract: found
          • Article: not found

          Developmental and regional expression in the rat brain and functional properties of four NMDA receptors.

          An in situ study of mRNAs encoding NMDA receptor subunits in the developing rat CNS revealed that, at all stages, the NR1 gene is expressed in virtually all neurons, whereas the four NR2 transcripts display distinct expression patterns. NR2B and NR2D mRNAs occur prenatally, whereas NR2A and NR2C mRNAs are first detected near birth. All transcripts except NR2D peak around P20. NR2D mRNA, present mainly in midbrain structures, peaks around P7 and thereafter decreases to adult levels. Postnatally, NR2B and NR2C transcript levels change in opposite directions in the cerebellar internal granule cell layer. In the adult hippocampus, NR2A and NR2B mRNAs are prominent in CA1 and CA3 pyramidal cells, but NR2C and NR2D mRNAs occur in different subsets of interneurons. Recombinant binary NR1-NR2 channels show comparable Ca2+ permeabilities, but marked differences in voltage-dependent Mg2+ block and in offset decay time constants. Thus, the distinct expression profiles and functional properties of NR2 subunits provide a basis for NMDA channel heterogeneity in the brain.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Glutamate neurotoxicity and diseases of the nervous system.

            D Choi (1988)
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Astrocytic purinergic signaling coordinates synaptic networks.

              To investigate the role of astrocytes in regulating synaptic transmission, we generated inducible transgenic mice that express a dominant-negative SNARE domain selectively in astrocytes to block the release of transmitters from these glial cells. By releasing adenosine triphosphate, which accumulates as adenosine, astrocytes tonically suppressed synaptic transmission, thereby enhancing the dynamic range for long-term potentiation and mediated activity-dependent, heterosynaptic depression. These results indicate that astrocytes are intricately linked in the regulation of synaptic strength and plasticity and provide a pathway for synaptic cross-talk.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Neurosci
                Front Neurosci
                Front. Neurosci.
                Frontiers in Neuroscience
                Frontiers Media S.A.
                1662-4548
                1662-453X
                16 December 2015
                2015
                : 9
                : 469
                Affiliations
                [1] 1Department of Neurology, Ulm University Ulm, Germany
                [2] 2Cellular Neurobiology Laboratory, Salk Institute for Biological Studies La Jolla, CA, USA
                Author notes

                Edited by: Irving E. Vega, Michigan State University, USA

                Reviewed by: Marco Aurelio M. Freire, State University of Rio Grande do Norte, Brazil; James C. Vickers, University of Tasmania, Australia

                *Correspondence: Jan Lewerenz jan.lewerenz@ 123456gmail.com ;

                This article was submitted to Neurodegeneration, a section of the journal Frontiers in Neuroscience

                Article
                10.3389/fnins.2015.00469
                4679930
                25653585
                772d4732-f8a0-454b-b26a-721c103bbaf3
                Copyright © 2015 Lewerenz and Maher.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 25 September 2015
                : 24 November 2015
                Page count
                Figures: 5, Tables: 0, Equations: 0, References: 241, Pages: 20, Words: 19506
                Funding
                Funded by: National Institutes of Health 10.13039/100000002
                Award ID: AG043816
                Categories
                Psychiatry
                Review

                Neurosciences
                glutamate receptors,glutamate transporters,system x−c,alzheimer's disease,huntington's disease,amyotrophic lateral sclerosis,neurodegeneration,excitotoxicity

                Comments

                Comment on this article