14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      EGFR signaling promotes inflammation and cancer stem-like activity in inflammatory breast cancer

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Inflammatory breast cancer (IBC) is the most lethal and aggressive type of breast cancer, with a strong proclivity to metastasize, and IBC-specific targeted therapies have not yet been developed. Epidermal growth factor receptor (EGFR) has emerged as an important therapeutic target in IBC. However, the mechanism behind the therapeutic effect of EGFR targeted therapy is not well defined. Here, we report that EGFR regulates the IBC cell population that expresses cancer stem-like cell (CSC) markers through COX-2, a key mediator of inflammation whose expression correlates with worse outcome in IBC. The COX-2 pathway promoted IBC cell migration and invasion and the CSC marker-bearing population in vitro, and the inhibition of this pathway reduced IBC tumor growth in vivo. Mechanistically, we identified Nodal, a member of the TGFβ superfamily, as a potential driver of COX-2-regulated invasive capacity and the CSC phenotype of IBC cells. Our data indicate that the EGFR pathway regulates the expression of COX-2, which in turn regulates the expression of Nodal and the activation of Nodal signaling. Together, our findings demonstrate a novel connection between the EGFR/COX-2/Nodal signaling axis and CSC regulation in IBC, which has potential implications for new combination approaches with EGFR targeted therapy for patients with IBC.

          Related collections

          Most cited references36

          • Record: found
          • Abstract: found
          • Article: not found

          Aldehyde dehydrogenase 1-positive cancer stem cells mediate metastasis and poor clinical outcome in inflammatory breast cancer.

          To examine the role of cancer stem cells (CSC) in mediating metastasis in inflammatory breast cancer (IBC) and the association of these cells with patient outcome in this aggressive type of breast cancer. CSCs were isolated from SUM149 and MARY-X, an IBC cell line and primary xenograft, by virtue of increased aldehyde dehydrogenase (ALDH) activity as assessed by the ALDEFLUOR assay. Invasion and metastasis of CSC populations were assessed by in vitro and mouse xenograft assays. Expression of ALDH1 was determined on a retrospective series of 109 IBC patients and this was correlated with histoclinical data. All statistical tests were two sided. Log-rank tests using Kaplan-Meier analysis were used to determine the correlation of ALDH1 expression with development of metastasis and patient outcome. Both in vitro and xenograft assays showed that invasion and metastasis in IBC are mediated by a cellular component that displays ALDH activity. Furthermore, expression of ALDH1 in IBC was an independent predictive factor for early metastasis and decreased survival in this patient population. These results suggest that the metastatic, aggressive behavior of IBC may be mediated by a CSC component that displays ALDH enzymatic activity. ALDH1 expression represents the first independent prognostic marker to predict metastasis and poor patient outcome in IBC. The results illustrate how stem cell research can translate into clinical practice in the IBC field.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The role of COX-2 in intestinal inflammation and colorectal cancer.

            Colorectal cancer (CRC) is a heterogeneous disease, including at least three major forms: hereditary, sporadic and colitis-associated CRC. A large body of evidence indicates that genetic mutations, epigenetic changes, chronic inflammation, diet and lifestyle are the risk factors for CRC. As elevated cyclooxygenase-2 (COX-2) expression was found in most CRC tissue and is associated with worse survival among CRC patients, investigators have sought to evaluate the effects of nonsteroidal anti-inflammatory drugs (NSAIDs) and selective COX-2 inhibitors (COXIBs) on CRC. The epidemiological studies, clinical trials and animal experiments indicate that NSAIDs are among the most promising chemopreventive agents for this disease. NSAIDs exert their anti-inflammatory and antitumor effects primarily by reducing prostaglandin production by inhibition of COX-2 activity. In this review, we highlight breakthroughs in our understanding of the roles of COX-2 in CRC and inflammatory bowel disease. These recent data provide a rationale for re-evaluating COX-2 as both the prognostic and the predictive marker in a wide variety of malignancies and for renewing the interest in evaluating relative benefits and risk of COXIBs in appropriately selected patients for cancer prevention and treatment.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Multiple drug resistance mechanisms in cancer.

              Multiple drug resistance (multidrug resistance; MDR), a phenomenon whereby human tumours that acquire resistance to one type of therapy are found to be resistant to several other drugs that are often quite different in both structure and mode of action, has been recognised clinically for several decades. An important advance in our understanding of MDR came with the identification of P-glycoprotein and other related transporters that were expressed in some cancer cells and could recognise and catalyse the efflux of diverse anticancer drugs from cells. A second advance came from an understanding of the mechanism of programmed cell death or apoptosis, leading to MDR mediated by increased to resistance to anticancer drug-induced apoptosis. A third advance came with the finding that the proliferation of human tumours was driven by a small population of self-renewing tumour cells, focussing attention on the MDR properties of these so-called tumour stem cells rather than on the cells that comprised the majority of the tumour population. A fourth advance was the delineation of features of the tumour microenvironment, including immunosuppression, which essentially provided tumour stem cells with an MDR phenotype. Most published work on the overcoming of MDR has concentrated on inhibition of drug transporters but the complexity of mechanisms contributing demands a broad strategy for the development of methods to overcome MDR in a clinical setting.
                Bookmark

                Author and article information

                Journal
                Oncotarget
                Oncotarget
                Oncotarget
                ImpactJ
                Oncotarget
                Impact Journals LLC
                1949-2553
                15 September 2017
                4 July 2017
                : 8
                : 40
                : 67904-67917
                Affiliations
                1 Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
                2 Section of Translational Breast Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
                3 Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
                4 Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
                5 Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
                6 Department of General Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
                7 Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
                8 Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
                Author notes
                Correspondence to: Naoto T. Ueno, nueno@ 123456mdanderson.org
                Article
                18958
                10.18632/oncotarget.18958
                5620223
                28978083
                772fdf97-a6b6-49f8-829c-378d35daa25f
                Copyright: © 2017 Wang et al.

                This article is distributed under the terms of the Creative Commons Attribution License (CC-BY), which permits unrestricted use and redistribution provided that the original author and source are credited.

                History
                : 19 October 2016
                : 17 June 2017
                Categories
                Research Paper

                Oncology & Radiotherapy
                inflammatory breast cancer,egfr,cox-2,nodal,cancer stem-like cells
                Oncology & Radiotherapy
                inflammatory breast cancer, egfr, cox-2, nodal, cancer stem-like cells

                Comments

                Comment on this article