6
views
0
recommends
+1 Recommend
2 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Review on Diagnosis of COVID-19 from Chest CT Images Using Artificial Intelligence

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The COVID-19 diagnostic approach is mainly divided into two broad categories, a laboratory-based and chest radiography approach. The last few months have witnessed a rapid increase in the number of studies use artificial intelligence (AI) techniques to diagnose COVID-19 with chest computed tomography (CT). In this study, we review the diagnosis of COVID-19 by using chest CT toward AI. We searched ArXiv, MedRxiv, and Google Scholar using the terms “deep learning”, “neural networks”, “COVID-19”, and “chest CT”. At the time of writing (August 24, 2020), there have been nearly 100 studies and 30 studies among them were selected for this review. We categorized the studies based on the classification tasks: COVID-19/normal, COVID-19/non-COVID-19, COVID-19/non-COVID-19 pneumonia, and severity. The sensitivity, specificity, precision, accuracy, area under the curve, and F1 score results were reported as high as 100%, 100%, 99.62, 99.87%, 100%, and 99.5%, respectively. However, the presented results should be carefully compared due to the different degrees of difficulty of different classification tasks.

          Related collections

          Most cited references 45

          • Record: found
          • Abstract: found
          • Article: not found

          Sensitivity of Chest CT for COVID-19: Comparison to RT-PCR

          Summary In a series of 51 patients with chest CT and RT-PCR assay performed within 3 days, the sensitivity of CT for COVID-19 infection was 98% compared to RT-PCR sensitivity of 71% (p<.001). Introduction In December 2019, an outbreak of unexplained pneumonia in Wuhan [1] was caused by a new coronavirus infection named COVID-19 (Corona Virus Disease 2019). Noncontrast chest CT may be considered for early diagnosis of viral disease, although viral nucleic acid detection using real-time polymerase chain reaction (RT-PCR) remains the standard of reference. Chung et al. reported that chest CT may be negative for viral pneumonia of COVID-19 [2] at initial presentation (3/21 patients). Recently, Xie reported 5/167 (3%) patients who had negative RT-PCR for COVID-19 at initial presentation despite chest CT findings typical of viral pneumonia [3]. The purpose of this study was to compare the sensitivity of chest CT and viral nucleic acid assay at initial patient presentation. Materials and Methods The retrospective analysis was approved by institutional review board and patient consent was waived. Patients at Taizhou Enze Medical Center (Group) Enze Hospital were evaluated from January 19, 2020 to February 4, 2020. During this period, chest CT and RT-PCR (Shanghai ZJ Bio-Tech Co, Ltd, Shanghai, China) was performed for consecutive patients who presented with a history of 1) travel or residential history in Wuhan or local endemic areas or contact with individuals with individuals with fever or respiratory symptoms from these areas within 14 days and 2) had fever or acute respiratory symptoms of unknown cause. In the case of an initial negative RT-PCR test, repeat testing was performed at intervals of 1 day or more. Of these patients, we included all patients who had both noncontrast chest CT scan (slice thickness, 5mm) and RT-PCR testing within an interval of 3 days or less and who had an eventual confirmed diagnosis of COVID-19 infection by RT-PCR testing (Figure 1). Typical and atypical chest CT findings were recorded according to CT features previously described for COVD-19 (4,5). The detection rate of COVID-19 infection based on the initial chest CT and RT-PCR was compared. Statistical analysis was performed using McNemar Chi-squared test with significance at the p <.05 level. Figure 1: Flowchart for patient inclusion. Results 51 patients (29 men and 22 women) were included with median age of 45 (interquartile range, 39- 55) years. All patients had throat swab (45 patients) or sputum samples (6 patients) followed by one or more RT-PCR assays. The average time from initial disease onset to CT was 3 +/- 3 days; the average time from initial disease onset to RT-PCR testing was 3 +/- 3 days. 36/51 patients had initial positive RT-PCR for COVID-19. 12/51 patients had COVID-19 confirmed by two RT-PCR nucleic acid tests (1 to 2 days), 2 patients by three tests (2-5 days) and 1 patient by four tests (7 days) after initial onset. 50/51 (98%) patients had evidence of abnormal CT compatible with viral pneumonia at baseline while one patient had a normal CT. Of 50 patients with abnormal CT, 36 (72%) had typical CT manifestations (e.g. peripheral, subpleural ground glass opacities, often in the lower lobes (Figure 2) and 14 (28%) had atypical CT manifestations (Figure 3) [2]. In this patient sample, difference in detection rate for initial CT (50/51 [98%, 95% CI 90-100%]) patients was greater than first RT-PCR (36/51 [71%, 95%CI 56-83%]) patients (p<.001). Figure 2a: Examples of typical chest CT findings compatible with COVID-19 pneumonia in patients with epidemiological and clinical presentation suspicious for COVID-19 infection. A, male, 74 years old with fever and cough for 5 days. Axial chest CT shows bilateral subpleural ground glass opacities (GGO). B, female, 55 years old, with fever and cough for 7 days. Axial chest CT shows extensive bilateral ground glass opacities and consolidation; C, male, 43 years old, presenting with fever and cough for 1 week. Axial chest CT shows small bilateral areas of peripheral GGO with minimal consolidation; D, female, 43 years old presenting with fever with cough for 5 days. Axial chest CT shows a right lung region of peripheral consolidation. Figure 2b: Examples of typical chest CT findings compatible with COVID-19 pneumonia in patients with epidemiological and clinical presentation suspicious for COVID-19 infection. A, male, 74 years old with fever and cough for 5 days. Axial chest CT shows bilateral subpleural ground glass opacities (GGO). B, female, 55 years old, with fever and cough for 7 days. Axial chest CT shows extensive bilateral ground glass opacities and consolidation; C, male, 43 years old, presenting with fever and cough for 1 week. Axial chest CT shows small bilateral areas of peripheral GGO with minimal consolidation; D, female, 43 years old presenting with fever with cough for 5 days. Axial chest CT shows a right lung region of peripheral consolidation. Figure 2c: Examples of typical chest CT findings compatible with COVID-19 pneumonia in patients with epidemiological and clinical presentation suspicious for COVID-19 infection. A, male, 74 years old with fever and cough for 5 days. Axial chest CT shows bilateral subpleural ground glass opacities (GGO). B, female, 55 years old, with fever and cough for 7 days. Axial chest CT shows extensive bilateral ground glass opacities and consolidation; C, male, 43 years old, presenting with fever and cough for 1 week. Axial chest CT shows small bilateral areas of peripheral GGO with minimal consolidation; D, female, 43 years old presenting with fever with cough for 5 days. Axial chest CT shows a right lung region of peripheral consolidation. Figure 2d: Examples of typical chest CT findings compatible with COVID-19 pneumonia in patients with epidemiological and clinical presentation suspicious for COVID-19 infection. A, male, 74 years old with fever and cough for 5 days. Axial chest CT shows bilateral subpleural ground glass opacities (GGO). B, female, 55 years old, with fever and cough for 7 days. Axial chest CT shows extensive bilateral ground glass opacities and consolidation; C, male, 43 years old, presenting with fever and cough for 1 week. Axial chest CT shows small bilateral areas of peripheral GGO with minimal consolidation; D, female, 43 years old presenting with fever with cough for 5 days. Axial chest CT shows a right lung region of peripheral consolidation. Figure 3a: Examples of chest CT findings less commonly reported in COVID-19 infection (atypical) in patients with epidemiological and clinical presentation suspicious for COVID-19 infection. A, male, 36 years old with cough for 3 days. Axial chest CT shows a small focal and central ground glass opacity (GGO) in the right upper lobe; B, female, 40 years old. Axial chest CT shows small peripheral linear opacities bilaterally. C, male, 38 years old. Axial chest CT shows a GGO in the central left lower lobe; D, male, 31 years old with fever for 1 day. Axial chest CT shows a linear opacity in the left lower lateral mid lung. Figure 3b: Examples of chest CT findings less commonly reported in COVID-19 infection (atypical) in patients with epidemiological and clinical presentation suspicious for COVID-19 infection. A, male, 36 years old with cough for 3 days. Axial chest CT shows a small focal and central ground glass opacity (GGO) in the right upper lobe; B, female, 40 years old. Axial chest CT shows small peripheral linear opacities bilaterally. C, male, 38 years old. Axial chest CT shows a GGO in the central left lower lobe; D, male, 31 years old with fever for 1 day. Axial chest CT shows a linear opacity in the left lower lateral mid lung. Figure 3c: Examples of chest CT findings less commonly reported in COVID-19 infection (atypical) in patients with epidemiological and clinical presentation suspicious for COVID-19 infection. A, male, 36 years old with cough for 3 days. Axial chest CT shows a small focal and central ground glass opacity (GGO) in the right upper lobe; B, female, 40 years old. Axial chest CT shows small peripheral linear opacities bilaterally. C, male, 38 years old. Axial chest CT shows a GGO in the central left lower lobe; D, male, 31 years old with fever for 1 day. Axial chest CT shows a linear opacity in the left lower lateral mid lung. Figure 3d: Examples of chest CT findings less commonly reported in COVID-19 infection (atypical) in patients with epidemiological and clinical presentation suspicious for COVID-19 infection. A, male, 36 years old with cough for 3 days. Axial chest CT shows a small focal and central ground glass opacity (GGO) in the right upper lobe; B, female, 40 years old. Axial chest CT shows small peripheral linear opacities bilaterally. C, male, 38 years old. Axial chest CT shows a GGO in the central left lower lobe; D, male, 31 years old with fever for 1 day. Axial chest CT shows a linear opacity in the left lower lateral mid lung. Discussion In our series, the sensitivity of chest CT was greater than that of RT-PCR (98% vs 71%, respectively, p<.001). The reasons for the low efficiency of viral nucleic acid detection may include: 1) immature development of nucleic acid detection technology; 2) variation in detection rate from different manufacturers; 3) low patient viral load; or 4) improper clinical sampling. The reasons for the relatively lower RT-PCR detection rate in our sample compared to a prior report are unknown (3). Our results support the use of chest CT for screening for COVD-19 for patients with clinical and epidemiologic features compatible with COVID-19 infection particularly when RT-PCR testing is negative.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Performance of radiologists in differentiating COVID-19 from viral pneumonia on chest CT

            Background Despite its high sensitivity in diagnosing COVID-19 in a screening population, chest CT appearances of COVID 19 pneumonia are thought to be non-specific. Purpose To assess the performance of United States (U.S.) and Chinese radiologists in differentiating COVID-19 from viral pneumonia on chest CT. Methods A total of 219 patients with both positive COVID-19 by RT-PCR and abnormal chest CT findings were retrospectively identified from 7 Chinese hospitals in Hunan Providence, China from January 6 to February 20, 2020. A total of 205 patients with positive Respiratory Pathogen Panel for viral pneumonia and CT findings consistent with or highly suspicious for pneumonia by original radiology interpretation within 7 days of each other were identified from Rhode Island Hospital in Providence, RI. Three Chinese radiologists blindly reviewed all chest CTs (n=424) to differentiate COVID-19 from viral pneumonia. A sample of 58 age-matched cases was randomly selected and evaluated by 4 U.S. radiologists in a similar fashion. Different CT features were recorded and compared between the two groups. Results For all chest CTs, three Chinese radiologists correctly differentiated COVID-19 from non-COVID-19 pneumonia 83% (350/424), 80% (338/424), and 60% (255/424) of the time, respectively. The seven radiologists had sensitivities of 80%, 67%, 97%, 93%, 83%, 73% and 70% and specificities of 100%, 93%, 7%, 100%, 93%, 93%, 100%. Compared to non-COVID-19 pneumonia, COVID-19 pneumonia was more likely to have a peripheral distribution (80% vs. 57%, p<0.001), ground-glass opacity (91% vs. 68%, p<0.001), fine reticular opacity (56% vs. 22%, p<0.001), and vascular thickening (59% vs. 22%, p<0.001), but less likely to have a central+peripheral distribution (14.% vs. 35%, p<0.001), pleural effusion (4.1 vs. 39%, p<0.001) and lymphadenopathy (2.7% vs. 10.2%, p<0.001). Conclusion Radiologists in China and the United States distinguished COVID-19 from viral pneumonia on chest CT with high specificity but moderate sensitivity. A translation of this abstract in Farsi is available in the supplement. - ترجمه چکیده این مقاله به فارسی، در ضمیمه موجود است.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Artificial Intelligence Distinguishes COVID-19 from Community Acquired Pneumonia on Chest CT

               Lin Li,  Lixin Qin,  Zeguo Xu (2020)
              Background Coronavirus disease has widely spread all over the world since the beginning of 2020. It is desirable to develop automatic and accurate detection of COVID-19 using chest CT. Purpose To develop a fully automatic framework to detect COVID-19 using chest CT and evaluate its performances. Materials and Methods In this retrospective and multi-center study, a deep learning model, COVID-19 detection neural network (COVNet), was developed to extract visual features from volumetric chest CT exams for the detection of COVID-19. Community acquired pneumonia (CAP) and other non-pneumonia CT exams were included to test the robustness of the model. The datasets were collected from 6 hospitals between August 2016 and February 2020. Diagnostic performance was assessed by the area under the receiver operating characteristic curve (AUC), sensitivity and specificity. Results The collected dataset consisted of 4356 chest CT exams from 3,322 patients. The average age is 49±15 years and there were slightly more male patients than female (1838 vs 1484; p-value=0.29). The per-exam sensitivity and specificity for detecting COVID-19 in the independent test set was 114 of 127 (90% [95% CI: 83%, 94%]) and 294 of 307 (96% [95% CI: 93%, 98%]), respectively, with an AUC of 0.96 (p-value<0.001). The per-exam sensitivity and specificity for detecting CAP in the independent test set was 87% (152 of 175) and 92% (239 of 259), respectively, with an AUC of 0.95 (95% CI: 0.93, 0.97). Conclusions A deep learning model can accurately detect COVID-19 and differentiate it from community acquired pneumonia and other lung diseases.
                Bookmark

                Author and article information

                Contributors
                Journal
                Comput Math Methods Med
                Comput Math Methods Med
                CMMM
                Computational and Mathematical Methods in Medicine
                Hindawi
                1748-670X
                1748-6718
                2020
                26 September 2020
                : 2020
                Affiliations
                1Department of Biomedical Engineering, Near East University, Nicosia / TRNC, Mersin-10, 99138, Turkey
                2DESAM Institute, Near East University, Nicosia / TRNC, Mersin-10, 99138, Turkey
                3Department of Artificial Intelligence Engineering, Near East University, Nicosia / TRNC, Mersin-10, 99138, Turkey
                Author notes

                Academic Editor: Lin Lu

                Article
                10.1155/2020/9756518
                7519983
                Copyright © 2020 Ilker Ozsahin et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                Categories
                Research Article

                Applied mathematics

                Comments

                Comment on this article