2
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Abdominal obesity and myocardial infarction risk - We demonstrate the anthropometric and mathematical reasons that justify the association bias of the waist-to-hip ratio Translated title: Obesidad abdominal y riesgo de infarto de miocardio: demostramos las razones antropométricas y matemáticas que justifican el sesgo de asociación del índice cintura-cadera

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Abstract Background: the waist-to-hip ratio (WHR) is widely used to evaluate the association of abdominal obesity with myocardial infarction (MI). Objective: our aim was to determine whether WHR-associated risk provides a bias. Methods: a case-control study in 252 men. Stratification was used as an approach for removing bias effects. We created a baseline covariate (WHR0.95-0.99) from a new matched sample in the stratum between 0.95 and 0.99. This stratum coincides with the overlap area of the distribution, where all subjects have a similar propensity score. We considered other covariate (WHRS), conditioned on WHR < 1 and waist circumference (WC) being assigned a spurious risk. We hypothesized that subtracting hip circumference from WC (WHD) can be essential to observe the confounding effect provided by WHR. Results: BMI: AUC: 0.694, 95 % CI (0.628-0.760); OR: 3.8. WC: AUC: 0.743, 95 % CI (0.681-0.805); OR: 5.7. WHR: AUC: 0.798, 95 % CI (0.740-0.855); OR: 8.6. Waist-height ratio (WHtR): AUC: 0.782, 95 % CI (0.724-0.840); OR: 8.5. WHD: AUC: 0.204, 95 % CI (0.146-0.261); OR: 0.36. Prevalence in cases: WHR ≥ 0.95 (84.1 % vs. 38 %; OR: 8.6); WHR < 1 (36.3 % vs. 85.7 %; OR: 2.3); WHR ≥ 1 (63.4 % vs. 14.2 %; OR: 4.4); WC ≥ 94.4 (71.4 % vs. 30.1 %; OR: 5.7); WHD ≥ 2.2 (27.7 % vs. 75.3 %; OR: 7.9); WHRs (50 % vs. 25 %; OR: 2). Conclusions: WHR provides an association bias in MI cases. This can be extrapolated to other study populations. The bias is explained by a mathematical misconception where the protective effect of HC is overestimated concerning WC and height. The risk associated with WHR as higher than that associated with WC and WHtR entails anthropometric inconsistency and bias, to the extent of becoming epidemiologically false.

          Translated abstract

          Resumen Antecedentes: el índice cintura-cadera (ICC) se utiliza ampliamente para evaluar la asociación de la obesidad abdominal con el infarto de miocardio (IM). Objetivo: nuestro propósito era determinar si el riesgo asociado a la ICC produce sesgo. Métodos: estudio de casos y controles en 252 varones. Usamos la estratificación como criterio para eliminar los efectos del sesgo. Creamos una covariable basal (ICC0,95-0,99) para una nueva muestra emparejada en el estrato de valores entre 0,95 y 0,99. Este estrato coincide con el área común de solapamiento de la distribución de puntos, donde todos los sujetos tienen un índice de propensión similar. Consideramos otra covariable (ICCS) condicionada en ICC < 1 y una circunferencia de cintura (CC) donde la asignación de riesgo fuera espúrea. Hipotetizamos que restando CC del valor de la cadera se calculaba otra variable aritmética (DCC) que podría ser esencial para evidenciar el efecto de confusion que genera el ICC. Resultados: IMC: ABC: 0,694, IC 95 % (0,628-0,760); OR: 3,8. CC: ABC: 0,743, IC 95 % (0,681-0,805); OR: 5,7. ICC: ABC: 0,798, IC 95 % (0,740-0,855); OR: 8,6. Índice cintura-talla (ICT): ABC: 0,782, IC 95 % (0,724-0,840); OR: 8,5. DCC: ABC: 0,204, IC 95 % (0,146-0,261); OR: 0,36. Prevalencia en los casos: ICC ≥ 0,95 (84,1 % vs. 38 %; OR: 8,6); ICC < 1 (36,3 % vs. 85,7 %; OR: 2,3); ICC ≥ 1 (63,4 % vs. 14,2 %; OR: 4,4); CC ≥ 94,4 (71,4 % vs. 30,1 %; OR: 5,7); DCC ≥ 2,2 (27,7 % vs. 75,3 %; OR: 7,9); ICCs (50 % vs. 25 %; OR: 2). Conclusiones: el ICC produce un sesgo de asociación en los casos de IM. Ello puede extrapolarse a otras poblaciones de estudio. El sesgo se explica por un error de concepto matemático que sobreestima el efecto protector de la cadera con respecto a la CC y la altura. El riesgo asociado al ICC por encima del de la CC o el ICT presenta inconsistencia antropométrica y sesgo, llegando a ser epidemiológicamente falso.

          Related collections

          Most cited references40

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980–2017: a systematic analysis for the Global Burden of Disease Study 2017

          Summary Background Global development goals increasingly rely on country-specific estimates for benchmarking a nation's progress. To meet this need, the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2016 estimated global, regional, national, and, for selected locations, subnational cause-specific mortality beginning in the year 1980. Here we report an update to that study, making use of newly available data and improved methods. GBD 2017 provides a comprehensive assessment of cause-specific mortality for 282 causes in 195 countries and territories from 1980 to 2017. Methods The causes of death database is composed of vital registration (VR), verbal autopsy (VA), registry, survey, police, and surveillance data. GBD 2017 added ten VA studies, 127 country-years of VR data, 502 cancer-registry country-years, and an additional surveillance country-year. Expansions of the GBD cause of death hierarchy resulted in 18 additional causes estimated for GBD 2017. Newly available data led to subnational estimates for five additional countries—Ethiopia, Iran, New Zealand, Norway, and Russia. Deaths assigned International Classification of Diseases (ICD) codes for non-specific, implausible, or intermediate causes of death were reassigned to underlying causes by redistribution algorithms that were incorporated into uncertainty estimation. We used statistical modelling tools developed for GBD, including the Cause of Death Ensemble model (CODEm), to generate cause fractions and cause-specific death rates for each location, year, age, and sex. Instead of using UN estimates as in previous versions, GBD 2017 independently estimated population size and fertility rate for all locations. Years of life lost (YLLs) were then calculated as the sum of each death multiplied by the standard life expectancy at each age. All rates reported here are age-standardised. Findings At the broadest grouping of causes of death (Level 1), non-communicable diseases (NCDs) comprised the greatest fraction of deaths, contributing to 73·4% (95% uncertainty interval [UI] 72·5–74·1) of total deaths in 2017, while communicable, maternal, neonatal, and nutritional (CMNN) causes accounted for 18·6% (17·9–19·6), and injuries 8·0% (7·7–8·2). Total numbers of deaths from NCD causes increased from 2007 to 2017 by 22·7% (21·5–23·9), representing an additional 7·61 million (7·20–8·01) deaths estimated in 2017 versus 2007. The death rate from NCDs decreased globally by 7·9% (7·0–8·8). The number of deaths for CMNN causes decreased by 22·2% (20·0–24·0) and the death rate by 31·8% (30·1–33·3). Total deaths from injuries increased by 2·3% (0·5–4·0) between 2007 and 2017, and the death rate from injuries decreased by 13·7% (12·2–15·1) to 57·9 deaths (55·9–59·2) per 100 000 in 2017. Deaths from substance use disorders also increased, rising from 284 000 deaths (268 000–289 000) globally in 2007 to 352 000 (334 000–363 000) in 2017. Between 2007 and 2017, total deaths from conflict and terrorism increased by 118·0% (88·8–148·6). A greater reduction in total deaths and death rates was observed for some CMNN causes among children younger than 5 years than for older adults, such as a 36·4% (32·2–40·6) reduction in deaths from lower respiratory infections for children younger than 5 years compared with a 33·6% (31·2–36·1) increase in adults older than 70 years. Globally, the number of deaths was greater for men than for women at most ages in 2017, except at ages older than 85 years. Trends in global YLLs reflect an epidemiological transition, with decreases in total YLLs from enteric infections, respiratory infections and tuberculosis, and maternal and neonatal disorders between 1990 and 2017; these were generally greater in magnitude at the lowest levels of the Socio-demographic Index (SDI). At the same time, there were large increases in YLLs from neoplasms and cardiovascular diseases. YLL rates decreased across the five leading Level 2 causes in all SDI quintiles. The leading causes of YLLs in 1990—neonatal disorders, lower respiratory infections, and diarrhoeal diseases—were ranked second, fourth, and fifth, in 2017. Meanwhile, estimated YLLs increased for ischaemic heart disease (ranked first in 2017) and stroke (ranked third), even though YLL rates decreased. Population growth contributed to increased total deaths across the 20 leading Level 2 causes of mortality between 2007 and 2017. Decreases in the cause-specific mortality rate reduced the effect of population growth for all but three causes: substance use disorders, neurological disorders, and skin and subcutaneous diseases. Interpretation Improvements in global health have been unevenly distributed among populations. Deaths due to injuries, substance use disorders, armed conflict and terrorism, neoplasms, and cardiovascular disease are expanding threats to global health. For causes of death such as lower respiratory and enteric infections, more rapid progress occurred for children than for the oldest adults, and there is continuing disparity in mortality rates by sex across age groups. Reductions in the death rate of some common diseases are themselves slowing or have ceased, primarily for NCDs, and the death rate for selected causes has increased in the past decade. Funding Bill & Melinda Gates Foundation.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            The Central Role of the Propensity Score in Observational Studies for Causal Effects

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Primary prevention of cardiovascular disease with a Mediterranean diet.

              Observational cohort studies and a secondary prevention trial have shown an inverse association between adherence to the Mediterranean diet and cardiovascular risk. We conducted a randomized trial of this diet pattern for the primary prevention of cardiovascular events. In a multicenter trial in Spain, we randomly assigned participants who were at high cardiovascular risk, but with no cardiovascular disease at enrollment, to one of three diets: a Mediterranean diet supplemented with extra-virgin olive oil, a Mediterranean diet supplemented with mixed nuts, or a control diet (advice to reduce dietary fat). Participants received quarterly individual and group educational sessions and, depending on group assignment, free provision of extra-virgin olive oil, mixed nuts, or small nonfood gifts. The primary end point was the rate of major cardiovascular events (myocardial infarction, stroke, or death from cardiovascular causes). On the basis of the results of an interim analysis, the trial was stopped after a median follow-up of 4.8 years. A total of 7447 persons were enrolled (age range, 55 to 80 years); 57% were women. The two Mediterranean-diet groups had good adherence to the intervention, according to self-reported intake and biomarker analyses. A primary end-point event occurred in 288 participants. The multivariable-adjusted hazard ratios were 0.70 (95% confidence interval [CI], 0.54 to 0.92) and 0.72 (95% CI, 0.54 to 0.96) for the group assigned to a Mediterranean diet with extra-virgin olive oil (96 events) and the group assigned to a Mediterranean diet with nuts (83 events), respectively, versus the control group (109 events). No diet-related adverse effects were reported. Among persons at high cardiovascular risk, a Mediterranean diet supplemented with extra-virgin olive oil or nuts reduced the incidence of major cardiovascular events. (Funded by the Spanish government's Instituto de Salud Carlos III and others; Controlled-Trials.com number, ISRCTN35739639.).
                Bookmark

                Author and article information

                Journal
                nh
                Nutrición Hospitalaria
                Nutr. Hosp.
                Grupo Arán (Madrid, Madrid, Spain )
                0212-1611
                1699-5198
                June 2021
                : 38
                : 3
                : 502-510
                Affiliations
                [3] Cáceres orgnameCentro de Atención Primaria Spain
                [1] Cáceres orgnameCentro de Nutrición y Medicina Deportiva Spain
                [4] Plasencia, Cáceres orgnameHospital Virgen del Puerto orgdiv1Clinical Laboratory Spain
                [2] Cáceres Extremadura orgnameUniversidad de Extremadura orgdiv1Facultad de Enfermería y Terapia Ocupacional orgdiv2Research Group in Bio-Anthropology and Cardiovascular Sciences. Department of Anatomy Spain
                Article
                S0212-16112021000300502 S0212-1611(21)03800300502
                10.20960/nh.03416
                7736d545-5945-4bbc-a14f-9c36cf602633

                This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

                History
                : 30 October 2020
                : 06 March 2021
                Page count
                Figures: 0, Tables: 0, Equations: 0, References: 40, Pages: 9
                Product

                SciELO Spain

                Categories
                Original Papers

                Infarto de miocardio,Enfermedad cardiovascular,Obesidad abdominal,Indicador antropométrico,Composición corporal,Sesgo,Abdominal obesity,Myocardial infarction,Body composition,Anthropometric indicator,Bias

                Comments

                Comment on this article