3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Nitric oxide is the mediator of both endothelium-dependent relaxation and hyperpolarization of the rabbit carotid artery

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references29

          • Record: found
          • Abstract: found
          • Article: not found

          Nitric oxide directly activates calcium-dependent potassium channels in vascular smooth muscle.

          Nitric oxide is the major endothelium-derived relaxing factor (EDRF), and it is thought to relax smooth muscle cells by stimulation of guanylate cyclase, accumulation of its product cyclic GMP, and cGMP-dependent modification of several intracellular processes, including activation of potassium channels through cGMP-dependent protein kinase. Here we present evidence that both exogenous nitric oxide and native EDRF can directly activate single Ca(2+)-dependent K+ channels (K+Ca) in cell-free membrane patches without requiring cGMP. Under conditions when guanylate cyclase was inhibited by methylene blue, considerable relaxation of rabbit aorta to nitric oxide persisted which was blocked by charybdotoxin, a specific inhibitor of K+Ca channels. These studies demonstrate a novel direct action of nitric oxide on K+Ca channels.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Nitric oxide and cGMP cause vasorelaxation by activation of a charybdotoxin-sensitive K channel by cGMP-dependent protein kinase.

            Nitric oxide (NO)-induced relaxation is associated with increased levels of cGMP in vascular smooth muscle cells. However, the mechanism by which cGMP causes relaxation is unknown. This study tested the hypothesis that activation of Ca-sensitive K (KCa) channels, mediated by a cGMP-dependent protein kinase, is responsible for the relaxation occurring in response to cGMP. In rat pulmonary artery rings, cGMP-dependent, but not cGMP-independent, relaxation was inhibited by tetraethylammonium, a classical K-channel blocker, and charybdotoxin, an inhibitor of KCa channels. Increasing extracellular K concentration also inhibited cGMP-dependent relaxation, without reducing vascular smooth muscle cGMP levels. In whole-cell patch-clamp experiments, NO and cGMP increased whole-cell K current by activating KCa channels. This effect was mimicked by intracellular administration of (Sp)-guanosine cyclic 3',5'-phosphorothioate, a preferential cGMP-dependent protein kinase activator. Okadaic acid, a phosphatase inhibitor, enhanced whole-cell K current, consistent with an important role for channel phosphorylation in the activation of NO-responsive KCa channels. Thus NO and cGMP relax vascular smooth muscle by a cGMP-dependent protein kinase-dependent activation of K channels. This suggests that the final common pathway shared by NO and the nitrovasodilators is cGMP-dependent K-channel activation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Measurement of nitric oxide in biological models.

              Nitric oxide (NO) is a small, gaseous, paramagnetic radical with a high affinity for interaction with ferrous hemoproteins such as soluble guanylate cyclase and hemoglobin. Interest in NO measurement increased exponentially with the discovery that NO or a related compound is the endothelium-derived relaxing factor (EDRF). In addition to being a potent endogenous vasodilator, NO has a role in inflammation, thrombosis, immunity, and neurotransmission. Measurement of NO is important as many of its effects (e.g., vasodilatation, inhibition of platelet aggregation) are similar to those of other substances produced by the endothelium, such as prostacyclin. NO is formed in small amounts in vivo and is rapidly destroyed by interaction with oxygen, making measurement difficult. A computerized search of the past five year's literature found NO measurements reported in fewer than 50 of 955 articles dealing with EDRF. Inhibitors of NO synthesis such as the arginine analogs or agents that inactivate NO, such as reduced hemoglobin, are commonly used as specific probes for NO, in vivo and in vitro; however, none of the NO inhibitors is completely specific. The most widely used assays use one of three strategies to detect NO: 1) NO is "trapped" by nitroso compounds, or reduced hemoglobin, forming a stable adduct that is detected by electron paramagnetic resonance (EPR) (detection threshold approximately 1 nmol); 2) NO oxidizes reduced hemoglobin to methemoglobin, which is detected by spectrophotometry (detection threshold approximately 1 nmol); 3) NO interacts with ozone producing light, "chemiluminescence" (detection threshold approximately 20 pmol). These assays can be performed to exclusively detect NO, or by adding acid and reducing agents to the sample, can measure NO and related oxides of nitrogen such as nitrite. Several new amperometric microelectrode assays offer the potential to measure smaller amounts of NO (10(-20) M), permitting NO measurement in intact issues and from single cells. This review describes the pharmacology and toxicology of NO and reviews the major techniques for measuring NO in biological models.
                Bookmark

                Author and article information

                Journal
                Proceedings of the National Academy of Sciences
                Proceedings of the National Academy of Sciences
                Proceedings of the National Academy of Sciences
                0027-8424
                1091-6490
                April 15 1997
                April 15 1997
                : 94
                : 8
                : 4193-4198
                Article
                10.1073/pnas.94.8.4193
                774a5553-a47b-450f-9477-b0888d5dc2d5
                © 1997
                History

                Comments

                Comment on this article