25
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Promoter nucleosome dynamics regulated by signalling through the CTD code

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The phosphorylation of the RNA polymerase II C-terminal domain (CTD) plays a key role in delineating transcribed regions within chromatin by recruiting histone methylases and deacetylases. Using genome-wide nucleosome mapping, we show that CTD S2 phosphorylation controls nucleosome dynamics in the promoter of a subset of 324 genes, including the regulators of cell differentiation ste11 and metabolic adaptation inv1. Mechanistic studies on these genes indicate that during gene activation a local increase of phospho-S2 CTD nearby the promoter impairs the phospho-S5 CTD-dependent recruitment of Set1 and the subsequent recruitment of specific HDACs, which leads to nucleosome depletion and efficient transcription. The early increase of phospho-S2 results from the phosphorylation of the CTD S2 kinase Lsk1 by MAP kinase in response to cellular signalling. The artificial tethering of the Lsk1 kinase at the ste11 promoter is sufficient to activate transcription. Therefore, signalling through the CTD code regulates promoter nucleosomes dynamics.

          DOI: http://dx.doi.org/10.7554/eLife.09008.001

          eLife digest

          The process of activating genes—known as gene expression—involves a number of steps. During the first step, the gene's DNA is copied or ‘transcribed’ to produce a molecule of messenger RNA. However, most of the DNA in a cell is wrapped around proteins called histones to make structures known as nucleosomes, and the DNA has to be unpacked to allow the enzymes that make messenger RNA to access it.

          Cells regulate how the DNA is packed by attaching chemical groups to the histone proteins. Adding acetyl groups to histones usually causes the nucleosomes to unwrap and creates loosely packed DNA that helps with gene expression. On the other hand, the addition of methyl groups has the opposite effect.

          RNA polymerase II is the enzyme that carries out transcription of messenger RNAs in all eukaryotic cells—that is, the cells of organisms like plants, animals, and fungi. Like all enzymes, RNA polymerase II is made of smaller building blocks called amino acids. One end of the RNA polymerase II enzyme, called the C-terminal domain (or CTD), contains a unique sequence of amino acids that serves as a scaffold to recruit other proteins involved in transcription and histone modifications. Different amino acids in this region of RNA polymerase II can be modified by the addition of phosphate groups. The pattern of these modifications is often thought of as a code and can influence which other proteins get recruited.

          It remains poorly understood how RNA polymerase II regulates nucleosomes to allow transcription to occur. Materne, Anandhakumar et al. have now addressed this issue by engineering mutant yeast cells in which phosphate groups cannot be added to specific amino acids in the RNA polymerase II enzyme. Most genes were expressed as normal in these yeast cells, but a few hundred genes were not expressed.

          Materne, Anandhakumar et al. then used a technique called MNase-Seq to map the position of nucleosomes across the genome and found that there were more nucleosomes near to start of these down-regulated genes. Further experiments showed that the addition of phosphate groups onto the RNA polymerase II is required to deplete the nucleosomes at the start of a gene called ste11, which allows transcription to occur.

          Materne, Anandhakumar et al. also found that artificially tethering the enzyme that adds phosphate groups to the C-terminal domain to the start of the ste11 gene was sufficient to oust nucleosomes and activate transcription by RNA polymerase II.

          Future work will address if this newly discovered mechanism is implicated in the activation of specific patterns of gene expression during the development of more complex organisms.

          DOI: http://dx.doi.org/10.7554/eLife.09008.002

          Related collections

          Most cited references51

          • Record: found
          • Abstract: found
          • Article: not found

          Methylation of lysine 4 on histone H3: intricacy of writing and reading a single epigenetic mark.

          Cells employ elaborate mechanisms to introduce structural and chemical variation into chromatin. Here, we focus on one such element of variation: methylation of lysine 4 in histone H3 (H3K4). We assess a growing body of literature, including treatment of how the mark is established, the patterns of methylation, and the functional consequences of this epigenetic signature. We discuss structural aspects of the H3K4 methyl recognition by the downstream effectors and propose a distinction between sequence-specific recruitment mechanisms and stabilization on chromatin through methyl-lysine recognition. Finally, we hypothesize how the unique properties of the polyvalent chromatin fiber and associated effectors may amplify small differences in methyl-lysine recognition, simultaneously allowing for a dynamic chromatin architecture.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A global protein kinase and phosphatase interaction network in yeast.

            The interactions of protein kinases and phosphatases with their regulatory subunits and substrates underpin cellular regulation. We identified a kinase and phosphatase interaction (KPI) network of 1844 interactions in budding yeast by mass spectrometric analysis of protein complexes. The KPI network contained many dense local regions of interactions that suggested new functions. Notably, the cell cycle phosphatase Cdc14 associated with multiple kinases that revealed roles for Cdc14 in mitogen-activated protein kinase signaling, the DNA damage response, and metabolism, whereas interactions of the target of rapamycin complex 1 (TORC1) uncovered new effector kinases in nitrogen and carbon metabolism. An extensive backbone of kinase-kinase interactions cross-connects the proteome and may serve to coordinate diverse cellular responses.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Phosphorylation and functions of the RNA polymerase II CTD.

              The C-terminal repeat domain (CTD), an unusual extension appended to the C terminus of the largest subunit of RNA polymerase II, serves as a flexible binding scaffold for numerous nuclear factors; which factors bind is determined by the phosphorylation patterns on the CTD repeats. Changes in phosphorylation patterns, as polymerase transcribes a gene, are thought to orchestrate the association of different sets of factors with the transcriptase and strongly influence functional organization of the nucleus. In this review we appraise what is known, and what is not known, about patterns of phosphorylation on the CTD of RNA polymerases II at the beginning, the middle, and the end of genes; the proposal that doubly phosphorylated repeats are present on elongating polymerase is explored. We discuss briefly proteins known to associate with the phosphorylated CTD at the beginning and ends of genes; we explore in more detail proteins that are recruited to the body of genes, the diversity of their functions, and the potential consequences of tethering these functions to elongating RNA polymerase II. We also discuss accumulating structural information on phosphoCTD-binding proteins and how it illustrates the variety of binding domains and interaction modes, emphasizing the structural flexibility of the CTD. We end with a number of open questions that highlight the extent of what remains to be learned about the phosphorylation and functions of the CTD.
                Bookmark

                Author and article information

                Contributors
                Role: Reviewing editor
                Journal
                eLife
                eLife
                eLife
                eLife
                eLife Sciences Publications, Ltd
                2050-084X
                2050-084X
                22 June 2015
                2015
                : 4
                : e09008
                Affiliations
                [1 ]deptURPHYM-GEMO, Namur Research College , University of Namur , Namur, Belgium
                [2 ]deptInstituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas , Universidad de Salamanca , Salamanca, Spain
                [3 ]deptDepartament de Ciencies Experimentals i de la Salut , Universitat Pompeu Fabra , Barcelona, Spain
                Howard Hughes Medical Institute, New York University School of Medicine , United States
                Howard Hughes Medical Institute, New York University School of Medicine , United States
                Author notes
                [* ]For correspondence: Damien.Hermand@ 123456unamur.be
                [†]

                These authors contributed equally to this work.

                [‡]

                Department of Biochemistry and Molecular Biology, LSU Health Sciences Center, Shreveport, United States.

                Article
                09008
                10.7554/eLife.09008
                4502402
                26098123
                77574005-bff5-4a1e-9e15-bd8f6b2b6088
                © 2015, Materne et al

                This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.

                History
                : 26 May 2015
                : 19 June 2015
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/501100003329, Ministerio de Economía y Competitividad;
                Award ID: BFU2011-28804 / CSD2007-00015
                Award Recipient :
                Funded by: FundRef http://dx.doi.org/10.13039/501100002661, Fonds De La Recherche Scientifique - FNRS;
                Award ID: FRFC 2.4510.10
                Award Recipient :
                Funded by: FundRef http://dx.doi.org/10.13039/501100002661, Fonds De La Recherche Scientifique - FNRS;
                Award ID: CR 1.5.013.09
                Award Recipient :
                Funded by: FundRef http://dx.doi.org/10.13039/501100002661, Fonds De La Recherche Scientifique - FNRS;
                Award ID: MIS F.4523.11
                Award Recipient :
                The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
                Categories
                Research Article
                Genes and Chromosomes
                Custom metadata
                2.3
                Phosphorylation of the C-terminal domain (CTD) of RNA Polymerase II controls nucleosomes dynamics at specific promoters to regulate transcription.

                Life sciences
                rna polymerase,chromatin,set1,map kinase,hdac,s. pombe
                Life sciences
                rna polymerase, chromatin, set1, map kinase, hdac, s. pombe

                Comments

                Comment on this article