44
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Clay nanosheets for topical delivery of RNAi for sustained protection against plant viruses

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references34

          • Record: found
          • Abstract: found
          • Article: not found

          RNA silencing in plants.

          There are at least three RNA silencing pathways for silencing specific genes in plants. In these pathways, silencing signals can be amplified and transmitted between cells, and may even be self-regulated by feedback mechanisms. Diverse biological roles of these pathways have been established, including defence against viruses, regulation of gene expression and the condensation of chromatin into heterochromatin. We are now in a good position to investigate the full extent of this functional diversity in genetic and epigenetic mechanisms of genome control.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The expanding world of small RNAs in plants.

            Plant genomes encode various small RNAs that function in distinct, yet overlapping, genetic and epigenetic silencing pathways. However, the abundance and diversity of small-RNA classes varies among plant species, suggesting coevolution between environmental adaptations and gene-silencing mechanisms. Biogenesis of small RNAs in plants is well understood, but we are just beginning to uncover their intricate regulation and activity. Here, we discuss the biogenesis of plant small RNAs, such as microRNAs, secondary siRNAs and heterochromatic siRNAs, and their diverse cellular and developmental functions, including in reproductive transitions, genomic imprinting and paramutation. We also discuss the diversification of small-RNA-directed silencing pathways through the expansion of RNA-dependent RNA polymerases, DICER proteins and ARGONAUTE proteins.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Visualizing lipid-formulated siRNA release from endosomes and target gene knockdown.

              A central hurdle in developing small interfering RNAs (siRNAs) as therapeutics is the inefficiency of their delivery across the plasma and endosomal membranes to the cytosol, where they interact with the RNA interference machinery. With the aim of improving endosomal release, a poorly understood and inefficient process, we studied the uptake and cytosolic release of siRNAs, formulated in lipoplexes or lipid nanoparticles, by live-cell imaging and correlated it with knockdown of a target GFP reporter. siRNA release occurred invariably from maturing endosomes within ~5-15 min of endocytosis. Cytosolic galectins immediately recognized the damaged endosome and targeted it for autophagy. However, inhibiting autophagy did not enhance cytosolic siRNA release. Gene knockdown occurred within a few hours of release and required <2,000 copies of cytosolic siRNAs. The ability to detect cytosolic release of siRNAs and understand how it is regulated will facilitate the development of rational strategies for improving the cytosolic delivery of candidate drugs.
                Bookmark

                Author and article information

                Journal
                Nature Plants
                NPLANTS
                Springer Nature
                2055-0278
                January 9 2017
                January 9 2017
                : 3
                : 2
                : 16207
                Article
                10.1038/nplants.2016.207
                28067898
                775a988f-ca7b-4f52-9cdf-0b3b50a83c5f
                © 2017
                History

                Comments

                Comment on this article