119
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Effect of gene therapy on visual function in Leber's congenital amaurosis.

      The New England journal of medicine
      Adolescent, Adult, Blindness, congenital, genetics, pathology, therapy, Carrier Proteins, DNA, Complementary, Dependovirus, Eye Proteins, Gene Transfer Techniques, Genetic Therapy, Genetic Vectors, Humans, Injections, Mutation, Retina, physiopathology, Retinal Degeneration, Visual Acuity, cis-trans-Isomerases

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Early-onset, severe retinal dystrophy caused by mutations in the gene encoding retinal pigment epithelium-specific 65-kD protein (RPE65) is associated with poor vision at birth and complete loss of vision in early adulthood. We administered to three young adult patients subretinal injections of recombinant adeno-associated virus vector 2/2 expressing RPE65 complementary DNA (cDNA) under the control of a human RPE65 promoter. There were no serious adverse events. There was no clinically significant change in visual acuity or in peripheral visual fields on Goldmann perimetry in any of the three patients. We detected no change in retinal responses on electroretinography. One patient had significant improvement in visual function on microperimetry and on dark-adapted perimetry. This patient also showed improvement in a subjective test of visual mobility. These findings provide support for further clinical studies of this experimental approach in other patients with mutant RPE65. (ClinicalTrials.gov number, NCT00643747 [ClinicalTrials.gov].). Copyright 2008 Massachusetts Medical Society.

          Related collections

          Most cited references16

          • Record: found
          • Abstract: found
          • Article: not found

          Mutations in RPE65 cause autosomal recessive childhood-onset severe retinal dystrophy.

          Autosomal recessive childhood-onset severe retinal dystrophy (arCSRD) designates a heterogeneous group of disorders affecting rod and cone photoreceptors simultaneously. The most severe cases are termed Leber congenital amaurosis (LCA), while the less aggressive forms are usually considered juvenile retinitis pigmentosa. Recently, mutations in the retinal-specific guanylate cyclase gene were found in patients with LCA. Disease genes implicated in other forms of arCSRD are expected to encode proteins present in the neuroretina or in the retinal pigment epithelium (RPE). The RPE, a monolayer of cells separating the vascular-rich choroid and the neuroretina, is in intimate contact with the outer segments of rods and cones via the microvilli surrounding the photoreceptors. The RPE expresses a tissue-specific and evolutionarily highly conserved 61 kD protein (RPE65) present at high levels in vivo. Although the function of RPE65 is not yet known, an important role in the RPE/photoreceptor vitamin-A cycle is suggested by the fact that RPE65 associates both with serum retinol-binding protein and with the RPE-specific 11-cis retinol dehydrogenase, an enzyme active in the synthesis of the visual pigment chromophore 11-cis retinal. Here we report that the analysis of RPE65 in a collection of about 100 unselected retinal-dystrophy patients of different ethnic origin revealed five that are likely to be pathogenic mutations, including a missense mutation (Pro363Thr), two point mutations affecting splicing (912 + 1G-->T and 65 + 5G-->A) and two small re-arrangements (ins144T and 831del8) on a total of nine alleles of five patients with arCSRD. In contrast to other genes whose defects have been implicated in degenerative retinopathies, RPE65 is the first disease gene in this group of inherited disorders that is expressed exclusively in the RPE, and may play a role in vitamin-A metabolism of the retina.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Mutations in RPE65 cause Leber's congenital amaurosis.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Rpe65 is the retinoid isomerase in bovine retinal pigment epithelium.

              The first event in light perception is absorption of a photon by an opsin pigment, which induces isomerization of its 11-cis-retinaldehyde chromophore. Restoration of light sensitivity to the bleached opsin requires chemical regeneration of 11-cis-retinaldehyde through an enzymatic pathway called the visual cycle. The isomerase, which converts an all-trans-retinyl ester to 11-cis-retinol, has never been identified. Here, we performed an unbiased cDNA expression screen to identify this isomerase. We discovered that the isomerase is a previously characterized protein called Rpe65. We confirmed our identification of the isomerase by demonstrating catalytic activity in mammalian and insect cells that express Rpe65. Mutations in the human RPE65 gene cause a blinding disease of infancy called Leber congenital amaurosis. Rpe65 with the Leber-associated C330Y and Y368H substitutions had no isomerase activity. Identification of Rpe65 as the isomerase explains the phenotypes in rpe65-/- knockout mice and in humans with Leber congenital amaurosis.
                Bookmark

                Author and article information

                Comments

                Comment on this article