Blog
About

0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      IQ-TREE 2: New Models and Efficient Methods for Phylogenetic Inference in the Genomic Era

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          IQ-TREE ( http://www.iqtree.org, last accessed February 6, 2020) is a user-friendly and widely used software package for phylogenetic inference using maximum likelihood. Since the release of version 1 in 2014, we have continuously expanded IQ-TREE to integrate a plethora of new models of sequence evolution and efficient computational approaches of phylogenetic inference to deal with genomic data. Here, we describe notable features of IQ-TREE version 2 and highlight the key advantages over other software.

          Related collections

          Most cited references 48

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies

          Motivation: Phylogenies are increasingly used in all fields of medical and biological research. Moreover, because of the next-generation sequencing revolution, datasets used for conducting phylogenetic analyses grow at an unprecedented pace. RAxML (Randomized Axelerated Maximum Likelihood) is a popular program for phylogenetic analyses of large datasets under maximum likelihood. Since the last RAxML paper in 2006, it has been continuously maintained and extended to accommodate the increasingly growing input datasets and to serve the needs of the user community. Results: I present some of the most notable new features and extensions of RAxML, such as a substantial extension of substitution models and supported data types, the introduction of SSE3, AVX and AVX2 vector intrinsics, techniques for reducing the memory requirements of the code and a plethora of operations for conducting post-analyses on sets of trees. In addition, an up-to-date 50-page user manual covering all new RAxML options is available. Availability and implementation: The code is available under GNU GPL at https://github.com/stamatak/standard-RAxML. Contact: alexandros.stamatakis@h-its.org Supplementary information: Supplementary data are available at Bioinformatics online.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0.

            PhyML is a phylogeny software based on the maximum-likelihood principle. Early PhyML versions used a fast algorithm performing nearest neighbor interchanges to improve a reasonable starting tree topology. Since the original publication (Guindon S., Gascuel O. 2003. A simple, fast and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst. Biol. 52:696-704), PhyML has been widely used (>2500 citations in ISI Web of Science) because of its simplicity and a fair compromise between accuracy and speed. In the meantime, research around PhyML has continued, and this article describes the new algorithms and methods implemented in the program. First, we introduce a new algorithm to search the tree space with user-defined intensity using subtree pruning and regrafting topological moves. The parsimony criterion is used here to filter out the least promising topology modifications with respect to the likelihood function. The analysis of a large collection of real nucleotide and amino acid data sets of various sizes demonstrates the good performance of this method. Second, we describe a new test to assess the support of the data for internal branches of a phylogeny. This approach extends the recently proposed approximate likelihood-ratio test and relies on a nonparametric, Shimodaira-Hasegawa-like procedure. A detailed analysis of real alignments sheds light on the links between this new approach and the more classical nonparametric bootstrap method. Overall, our tests show that the last version (3.0) of PhyML is fast, accurate, stable, and ready to use. A Web server and binary files are available from http://www.atgc-montpellier.fr/phyml/.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              FastTree 2 – Approximately Maximum-Likelihood Trees for Large Alignments

              Background We recently described FastTree, a tool for inferring phylogenies for alignments with up to hundreds of thousands of sequences. Here, we describe improvements to FastTree that improve its accuracy without sacrificing scalability. Methodology/Principal Findings Where FastTree 1 used nearest-neighbor interchanges (NNIs) and the minimum-evolution criterion to improve the tree, FastTree 2 adds minimum-evolution subtree-pruning-regrafting (SPRs) and maximum-likelihood NNIs. FastTree 2 uses heuristics to restrict the search for better trees and estimates a rate of evolution for each site (the “CAT” approximation). Nevertheless, for both simulated and genuine alignments, FastTree 2 is slightly more accurate than a standard implementation of maximum-likelihood NNIs (PhyML 3 with default settings). Although FastTree 2 is not quite as accurate as methods that use maximum-likelihood SPRs, most of the splits that disagree are poorly supported, and for large alignments, FastTree 2 is 100–1,000 times faster. FastTree 2 inferred a topology and likelihood-based local support values for 237,882 distinct 16S ribosomal RNAs on a desktop computer in 22 hours and 5.8 gigabytes of memory. Conclusions/Significance FastTree 2 allows the inference of maximum-likelihood phylogenies for huge alignments. FastTree 2 is freely available at http://www.microbesonline.org/fasttree.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                Mol Biol Evol
                Mol. Biol. Evol
                molbev
                Molecular Biology and Evolution
                Oxford University Press
                0737-4038
                1537-1719
                May 2020
                03 February 2020
                03 February 2020
                : 37
                : 5
                : 1530-1534
                Affiliations
                [m1 ] Research School of Computer Science , Australian National University, Canberra, ACT, Australia
                [m2 ] Department of Ecology and Evolution , Research School of Biology, Australian National University, Canberra, ACT, Australia
                [m3 ] Center for Integrative Bioinformatics Vienna , Max Perutz Labs, University of Vienna and Medical University of Vienna, Vienna, Austria
                [m4 ] Department of Biological Physics , Eötvös Lórand University, Budapest, Hungary
                [m5 ] Discipline of Mathematics , University of Tasmania, Hobart, TAS, Australia
                [m6 ] Bioinformatics and Computational Biology , Faculty of Computer Science, University of Vienna, Vienna, Austria
                Author notes
                [†]

                Arndt von Haeseler and Robert Lanfear contributed equally to this work.

                Corresponding author: E-mail: m.bui@ 123456anu.edu.au .
                Article
                msaa015
                10.1093/molbev/msaa015
                7182206
                32011700
                © The Author(s) 2020. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

                Page count
                Pages: 5
                Product
                Funding
                Funded by: Austrian Science Fund, DOI 10.13039/501100002428;
                Award ID: I-2805-B29
                Funded by: Australian National University Futures Scheme;
                Funded by: European Research Council, DOI 10.13039/100010663;
                Funded by: European Union's Horizon 2020 research and innovation programme;
                Award ID: 714774
                Categories
                Resources

                Molecular biology

                phylogenetics, phylogenomics, maximum likelihood, models of sequence evolution

                Comments

                Comment on this article