29
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Capturing a Flavivirus Pre-Fusion Intermediate

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          During cell entry of flaviviruses, low endosomal pH triggers the rearrangement of the viral surface glycoproteins to a fusion-active state that allows the release of the infectious RNA into the cytoplasm. In this work, West Nile virus was complexed with Fab fragments of the neutralizing mAb E16 and was subsequently exposed to low pH, trapping the virions in a pre-fusion intermediate state. The structure of the complex was studied by cryo-electron microscopy and provides the first structural glimpse of a flavivirus fusion intermediate near physiological conditions. A radial expansion of the outer protein layer of the virion was observed compared to the structure at pH 8. The resulting ∼60 Å-wide shell of low density between lipid bilayer and outer protein layer is likely traversed by the stem region of the E glycoprotein. By using antibody fragments, we have captured a structural intermediate of a virus that likely occurs during cell entry. The trapping of structural transition states by antibody fragments will be applicable for other processes in the flavivirus life cycle and delineating other cellular events that involve conformational rearrangements.

          Author Summary

          West Nile Virus (WNV) and other related viruses such as dengue virus enter their host cell by a process that involves fusion between the viral membrane and the membrane of cellular vesicles (endosomes) resulting in the release of the viral genome into the cytoplasm of the cell. This fusion event is initiated by low pH in the endosomes. Little is known regarding structural changes within the viral particle that render the viral surface proteins capable of fusion. In the present study, we used antibody fragments as a tool to trap virions in a pre-fusion intermediate state and examined these particles by cryo-electron microscopy. We showed that low pH triggered a radial displacement of the virion's external protein layer. The surface proteins moved away from the viral membrane, a shift made possible by the outward extension of a small alpha-helical region of the surface protein. The process gives the proteins greater sideways freedom for their reorganization into the fusion-active state. Our results provide a first structural glimpse into the low pH-induced conformational rearrangement of the flavivirus particle that occurs prior to fusion of viral and endosomal membranes. Such dissection of the fusion process highlights targets for the development of antiviral strategies.

          Related collections

          Most cited references13

          • Record: found
          • Abstract: found
          • Article: not found

          Structure of the dengue virus envelope protein after membrane fusion.

          Dengue virus enters a host cell when the viral envelope glycoprotein, E, binds to a receptor and responds by conformational rearrangement to the reduced pH of an endosome. The conformational change induces fusion of viral and host-cell membranes. A three-dimensional structure of the soluble E ectodomain (sE) in its trimeric, postfusion state reveals striking differences from the dimeric, prefusion form. The elongated trimer bears three 'fusion loops' at one end, to insert into the host-cell membrane. Their structure allows us to model directly how these fusion loops interact with a lipid bilayer. The protein folds back on itself, directing its carboxy terminus towards the fusion loops. We propose a fusion mechanism driven by essentially irreversible conformational changes in E and facilitated by fusion-loop insertion into the outer bilayer leaflet. Specific features of the folded-back structure suggest strategies for inhibiting flavivirus entry.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Development of a humanized monoclonal antibody with therapeutic potential against West Nile virus

            Neutralization of West Nile virus (WNV) in vivo correlates with the development of an antibody response against the viral envelope (E) protein. Using random mutagenesis and yeast surface display, we defined individual contact residues of 14 newly generated monoclonal antibodies against domain III of the WNV E protein. Monoclonal antibodies that strongly neutralized WNV localized to a surface patch on the lateral face of domain III. Convalescent antibodies from individuals who had recovered from WNV infection also detected this epitope. One monoclonal antibody, E16, neutralized 10 different strains in vitro, and showed therapeutic efficacy in mice, even when administered as a single dose 5 d after infection. A humanized version of E16 was generated that retained antigen specificity, avidity and neutralizing activity. In postexposure therapeutic trials in mice, a single dose of humanized E16 protected mice against WNV-induced mortality, and may therefore be a viable treatment option against WNV infection in humans. Supplementary information The online version of this article (doi:10.1038/nm1240) contains supplementary material, which is available to authorized users.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Structure of a flavivirus envelope glycoprotein in its low-pH-induced membrane fusion conformation.

              Enveloped viruses enter cells via a membrane fusion reaction driven by conformational changes of specific viral envelope proteins. We report here the structure of the ectodomain of the tick-borne encephalitis virus envelope glycoprotein, E, a prototypical class II fusion protein, in its trimeric low-pH-induced conformation. We show that, in the conformational transition, the three domains of the neutral-pH form are maintained but their relative orientation is altered. Similar to the postfusion class I proteins, the subunits rearrange such that the fusion peptide loops cluster at one end of an elongated molecule and the C-terminal segments, connecting to the viral transmembrane region, run along the sides of the trimer pointing toward the fusion peptide loops. Comparison with the low-pH-induced form of the alphavirus class II fusion protein reveals striking differences at the end of the molecule bearing the fusion peptides, suggesting an important conformational effect of the missing membrane connecting segment.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Pathog
                plos
                plospath
                PLoS Pathogens
                Public Library of Science (San Francisco, USA )
                1553-7366
                1553-7374
                November 2009
                November 2009
                26 November 2009
                : 5
                : 11
                : e1000672
                Affiliations
                [1 ]Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
                [2 ]MacroGenics Inc., Rockville, Maryland, United States of America
                [3 ]Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
                [4 ]Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, United States of America
                [5 ]Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
                [6 ]Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
                University of North Carolina, United States of America
                Author notes

                Conceived and designed the experiments: BK MGR. Performed the experiments: BK PRC HAH. Analyzed the data: BK RJK MSD MGR. Contributed reagents/materials/analysis tools: SJ DHF MSD. Wrote the paper: BK RJK MSD MGR.

                Article
                09-PLPA-RA-1554R2
                10.1371/journal.ppat.1000672
                2776511
                19956725
                7775dbeb-0465-4d21-809d-590702206f9f
                Kaufmann et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 2 September 2009
                : 29 October 2009
                Page count
                Pages: 5
                Categories
                Research Article
                Biochemistry/Macromolecular Assemblies and Machines
                Biophysics/Macromolecular Assemblies and Machines
                Computational Biology/Macromolecular Structure Analysis
                Immunology
                Infectious Diseases/Viral Infections
                Virology
                Virology/Host Invasion and Cell Entry
                Virology/Virion Structure, Assembly, and Egress

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article