54
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      BACs as Tools for the Study of Genomic Imprinting

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Genomic imprinting in mammals results in the expression of genes from only one parental allele. Imprinting occurs as a consequence of epigenetic marks set down either in the father's or the mother's germ line and affects a very specific category of mammalian gene. A greater understanding of this distinctive phenomenon can be gained from studies using large genomic clones, called bacterial artificial chromosomes (BACs). Here, we review the important applications of BACs to imprinting research, covering physical mapping studies and the use of BACs as transgenes in mice to study gene expression patterns, to identify imprinting centres, and to isolate the consequences of altered gene dosage. We also highlight the significant and unique advantages that rapid BAC engineering brings to genomic imprinting research.

          Related collections

          Most cited references85

          • Record: found
          • Abstract: found
          • Article: not found

          A gene expression atlas of the central nervous system based on bacterial artificial chromosomes.

          The mammalian central nervous system (CNS) contains a remarkable array of neural cells, each with a complex pattern of connections that together generate perceptions and higher brain functions. Here we describe a large-scale screen to create an atlas of CNS gene expression at the cellular level, and to provide a library of verified bacterial artificial chromosome (BAC) vectors and transgenic mouse lines that offer experimental access to CNS regions, cell classes and pathways. We illustrate the use of this atlas to derive novel insights into gene function in neural cells, and into principal steps of CNS development. The atlas, library of BAC vectors and BAC transgenic mice generated in this screen provide a rich resource that allows a broad array of investigations not previously available to the neuroscience community.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Essential role for de novo DNA methyltransferase Dnmt3a in paternal and maternal imprinting.

            Imprinted genes are epigenetically marked during gametogenesis so that they are exclusively expressed from either the paternal or the maternal allele in offspring. Imprinting prevents parthenogenesis in mammals and is often disrupted in congenital malformation syndromes, tumours and cloned animals. Although de novo DNA methyltransferases of the Dnmt3 family are implicated in maternal imprinting, the lethality of Dnmt3a and Dnmt3b knockout mice has precluded further studies. We here report the disruption of Dnmt3a and Dnmt3b in germ cells, with their preservation in somatic cells, by conditional knockout technology. Offspring from Dnmt3a conditional mutant females die in utero and lack methylation and allele-specific expression at all maternally imprinted loci examined. Dnmt3a conditional mutant males show impaired spermatogenesis and lack methylation at two of three paternally imprinted loci examined in spermatogonia. By contrast, Dnmt3b conditional mutants and their offspring show no apparent phenotype. The phenotype of Dnmt3a conditional mutants is indistinguishable from that of Dnmt3L knockout mice, except for the discrepancy in methylation at one locus. These results indicate that both Dnmt3a and Dnmt3L are required for methylation of most imprinted loci in germ cells, but also suggest the involvement of other factors.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Dnmt3L and the establishment of maternal genomic imprints.

              Complementary sets of genes are epigenetically silenced in male and female gametes in a process termed genomic imprinting. The Dnmt3L gene is expressed during gametogenesis at stages where genomic imprints are established. Targeted disruption of Dnmt3L caused azoospermia in homozygous males, and heterozygous progeny of homozygous females died before midgestation. Bisulfite genomic sequencing of DNA from oocytes and embryos showed that removal of Dnmt3L prevented methylation of sequences that are normally maternally methylated. The defect was specific to imprinted regions, and global genome methylation levels were not affected. Lack of maternal methylation imprints in heterozygous embryos derived from homozygous mutant oocytes caused biallelic expression of genes that are normally expressed only from the allele of paternal origin. The key catalytic motifs characteristic of DNA cytosine methyltransferases have been lost from Dnmt3L, and the protein is more likely to act as a regulator of imprint establishment than as a DNA methyltransferase.
                Bookmark

                Author and article information

                Journal
                J Biomed Biotechnol
                JBB
                Journal of Biomedicine and Biotechnology
                Hindawi Publishing Corporation
                1110-7243
                1110-7251
                2011
                13 December 2010
                : 2011
                : 283013
                Affiliations
                Cardiff School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
                Author notes

                Academic Editor: Noelle E. Cockett

                Article
                10.1155/2011/283013
                3010669
                21197393
                777e654e-63f9-44cc-bc63-738b5d93d9a8
                Copyright © 2011 S. J. Tunster et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 20 May 2010
                : 20 July 2010
                : 19 October 2010
                Categories
                Review Article

                Molecular medicine
                Molecular medicine

                Comments

                Comment on this article