12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Increased adenosine levels contribute to ischemic kidney fibrosis in the unilateral ureteral obstruction model

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Renal interstitial fibrosis (RIF) occurs as a result of chronic kidney disease (CKD) and is a common pathway leading to end-stage renal failure. Renal tissue hypoxia and ischemia are present during CKD. Adenosine (ADO) is an important signaling molecule induced under ischemic and hypoxic conditions. In the present study, the association between ADO and RIF was investigated using a mouse model, with the aim of obtaining important information relevant to the prevention and treatment of RIF. A unilateral ureteral obstruction (UUO) model of RIF was established in mice. A total of 44 male mice were randomly divided into sham, model and intervention groups, and samples were collected on days 1, 3, 7, and 14 after modeling. These were collected to detect hypoxia and changes in ADO concentration in obstructed renal tissue as well as to analyze the pathological changes and degree of RIF in the renal tissue. Changes in the levels of collagen deposition and profibrogenic factors in renal tissues were analyzed following intervention with an ADO receptor blocker. Following the UUO procedure, continuous hypoxia was present in the obstructed renal tissue, accompanied by an increased ADO concentration. Tubular injury and interstitial fibrosis progressively increased over time following the UUO procedure. The mRNA expression levels of tissue tumor growth factor β 1 (TGF-β 1) and α 1(I) procollagen were significantly increased. Subsequent to the ADO pathway being blocked by 8-( p-sulfophenyl)-theophylline, tubular injury and interstitial fibrosis were reduced and the expression of related cytokines was decreased. Increased ADO levels were induced by hypoxia, causing the development of RIF. Following the blocking of the ADO pathway, renal damage was deferred and renal functions were protected.

          Related collections

          Most cited references23

          • Record: found
          • Abstract: found
          • Article: not found

          Renal fibrosis: new insights into the pathogenesis and therapeutics.

          Youhua Liu (2006)
          Renal fibrosis is the inevitable consequence of an excessive accumulation of extracellular matrix that occurs in virtually every type of chronic kidney disease. The pathogenesis of renal fibrosis is a progressive process that ultimately leads to end-stage renal failure, a devastating disorder that requires dialysis or kidney transplantation. In a simplistic view, renal fibrosis represents a failed wound-healing process of the kidney tissue after chronic, sustained injury. Several cellular pathways, including mesangial and fibroblast activation as well as tubular epithelial-mesenchymal transition, have been identified as the major avenues for the generation of the matrix-producing cells in diseased conditions. Among the many fibrogenic factors that regulate renal fibrotic process, transforming growth factor-beta (TGF-beta) is one that plays a central role. Although defective matrix degradation may contribute to tissue scarring, the exact action and mechanisms of the matrix-degrading enzymes in the injured kidney have become increasingly complicated. Recent discoveries on endogenous antifibrotic factors have evolved novel strategies aimed at antagonizing the fibrogenic action of TGF-beta/Smad signaling. Many therapeutic interventions appear effective in animal models; however, translation of these promising results into humans in the clinical setting remains a daunting task. This mini-review attempts to highlight the recent progress in our understanding of the cellular and molecular pathways leading to renal fibrosis, and discusses the challenges and opportunities in developing therapeutic strategies.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Adenosine, an endogenous distress signal, modulates tissue damage and repair.

            Adenosine is formed inside cells or on their surface, mostly by breakdown of adenine nucleotides. The formation of adenosine increases in different conditions of stress and distress. Adenosine acts on four G-protein coupled receptors: two of them, A(1) and A(3), are primarily coupled to G(i) family G proteins; and two of them, A(2A) and A(2B), are mostly coupled to G(s) like G proteins. These receptors are antagonized by xanthines including caffeine. Via these receptors it affects many cells and organs, usually having a cytoprotective function. Joel Linden recently grouped these protective effects into four general modes of action: increased oxygen supply/demand ratio, preconditioning, anti-inflammatory effects and stimulation of angiogenesis. This review will briefly summarize what is known and what is not in this regard. It is argued that drugs targeting adenosine receptors might be useful adjuncts in many therapeutic approaches.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Endogenous adenosine produced during hypoxia attenuates neutrophil accumulation: coordination by extracellular nucleotide metabolism.

              Hypoxia is a well-documented inflammatory stimulus and results in tissue polymorphonuclear leukocyte (PMN) accumulation. Likewise, increased tissue adenosine levels are commonly associated with hypoxia, and given the anti-inflammatory properties of adenosine, we hypothesized that adenosine production via adenine nucleotide metabolism at the vascular surface triggers an endogenous anti-inflammatory response during hypoxia. Initial in vitro studies indicated that endogenously generated adenosine, through activation of PMN adenosine A(2A) and A(2B) receptors, functions as an antiadhesive signal for PMN binding to microvascular endothelia. Intravascular nucleotides released by inflammatory cells undergo phosphohydrolysis via hypoxia-induced CD39 ectoapyrase (CD39 converts adenosine triphosphate/adenosine diphosphate [ATP/ADP] to adenosine monophosphate [AMP]) and CD73 ecto-5'-nucleotidase (CD73 converts AMP to adenosine). Extensions of our in vitro findings using cd39- and cd73-null animals revealed that extracellular adenosine produced through adenine nucleotide metabolism during hypoxia is a potent anti-inflammatory signal for PMNs in vivo. These findings identify CD39 and CD73 as critical control points for endogenous adenosine generation and implicate this pathway as an innate mechanism to attenuate excessive tissue PMN accumulation.
                Bookmark

                Author and article information

                Journal
                Exp Ther Med
                Exp Ther Med
                ETM
                Experimental and Therapeutic Medicine
                D.A. Spandidos
                1792-0981
                1792-1015
                March 2015
                13 January 2015
                13 January 2015
                : 9
                : 3
                : 737-743
                Affiliations
                Department of Urology, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
                Author notes
                Correspondence to: Dr Yingbo Dai, Department of Urology, The Third Xiangya Hospital of Central South University, 138 Hexi Yuelu Tongzipo Road, Changsha, Hunan 410013, P.R. China, E-mail: ajin530@ 123456139.com
                Article
                etm-09-03-0737
                10.3892/etm.2015.2177
                4316984
                25667621
                777f9345-cf9f-4883-bf4e-d681590053a2
                Copyright © 2015, Spandidos Publications

                This is an open-access article licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License. The article may be redistributed, reproduced, and reused for non-commercial purposes, provided the original source is properly cited.

                History
                : 26 December 2013
                : 30 June 2014
                Categories
                Articles

                Medicine
                adenosine,α-smooth muscle actin,cytokines,renal interstitial fibrosis,unilateral ureteral obstruction model

                Comments

                Comment on this article