22
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Phylodynamics of rapidly adapting pathogens: extinction and speciation of a Red Queen

      Preprint
      , ,

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Rapidly evolving pathogens like influenza viruses can persist by accumulating antigenic novelty fast enough to evade the adaptive immunity of the host population, yet without continuous accumulation of genetic diversity. This dynamical state is often compared to the Red Queen evolving as fast as it can just to maintain its foothold in the host population: Accumulation of antigenic novelty is balanced by the build-up of host immunity. Such Red Queen States (RQS) of continuous adaptation in large rapidly mutating populations are well understood in terms of Traveling Wave (TW) theories of population genetics. Here we shall make explicit the mapping of the established Multi-strain Susceptible-Infected-Recovered (SIR) model onto the TW theory and demonstrate that a pathogen can persist in RQS if cross-immunity is long-ranged and its population size is large populations allowing for rapid adaptation. We then investigate the stability of this state focusing on the rate of extinction and the rate of "speciation" defined as antigenic divergence of viral strains beyond the range of cross-inhibition. RQS states are transient, but in a certain range of evolutionary parameters can exist for the time long compared to the typical time to the most recent common ancestor (\(T_{MRCA}\)). In this range the steady TW is unstable and the antigenic advance of the lead strains relative to the typical co-circulating viruses tends to oscillate. This results in large fluctuations in prevalence that facilitate extinction. We shall demonstrate that the rate of TW fission into antigenically uncoupled viral populations is related to fluctuations of \(T_{MRCA}\) and construct a "phase diagram" identifying different regimes of viral phylodynamics as a function of evolutionary parameters.

          Related collections

          Most cited references14

          • Record: found
          • Abstract: found
          • Article: not found

          Ecological and immunological determinants of influenza evolution.

          In pandemic and epidemic forms, influenza causes substantial, sometimes catastrophic, morbidity and mortality. Intense selection from the host immune system drives antigenic change in influenza A and B, resulting in continuous replacement of circulating strains with new variants able to re-infect hosts immune to earlier types. This 'antigenic drift' often requires a new vaccine to be formulated before each annual epidemic. However, given the high transmissibility and mutation rate of influenza, the constancy of genetic diversity within lineages over time is paradoxical. Another enigma is the replacement of existing strains during a global pandemic caused by 'antigenic shift'--the introduction of a new avian influenza A subtype into the human population. Here we explore ecological and immunological factors underlying these patterns using a mathematical model capturing both realistic epidemiological dynamics and viral evolution at the sequence level. By matching model output to phylogenetic patterns seen in sequence data collected through global surveillance, we find that short-lived strain-transcending immunity is essential to restrict viral diversity in the host population and thus to explain key aspects of drift and shift dynamics.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Beneficial mutation selection balance and the effect of linkage on positive selection.

            When beneficial mutations are rare, they accumulate by a series of selective sweeps. But when they are common, many beneficial mutations will occur before any can fix, so there will be many different mutant lineages in the population concurrently. In an asexual population, these different mutant lineages interfere and not all can fix simultaneously. In addition, further beneficial mutations can accumulate in mutant lineages while these are still a minority of the population. In this article, we analyze the dynamics of such multiple mutations and the interplay between multiple mutations and interference between clones. These result in substantial variation in fitness accumulating within a single asexual population. The amount of variation is determined by a balance between selection, which destroys variation, and beneficial mutations, which create more. The behavior depends in a subtle way on the population parameters: the population size, the beneficial mutation rate, and the distribution of the fitness increments of the potential beneficial mutations. The mutation-selection balance leads to a continually evolving population with a steady-state fitness variation. This variation increases logarithmically with both population size and mutation rate and sets the rate at which the population accumulates beneficial mutations, which thus also grows only logarithmically with population size and mutation rate. These results imply that mutator phenotypes are less effective in larger asexual populations. They also have consequences for the advantages (or disadvantages) of sex via the Fisher-Muller effect; these are discussed briefly.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Theoretical studies of clonal selection: minimal antibody repertoire size and reliability of self-non-self discrimination.

                Bookmark

                Author and article information

                Journal
                28 October 2018
                Article
                1810.11918
                77860e86-b24e-4cec-bd27-4caefc0c544d

                http://creativecommons.org/licenses/by/4.0/

                History
                Custom metadata
                15 pages, 9 figures, 1 table
                q-bio.PE

                Evolutionary Biology
                Evolutionary Biology

                Comments

                Comment on this article