2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Transcriptome Sequencing and Metabolome Analysis Reveal Genes Involved in Pigmentation of Green-Colored Cotton Fibers

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Green-colored fiber (GCF) is the unique raw material for naturally colored cotton textile but we know little about the pigmentation process in GCF. Here we compared transcriptomes and metabolomes of 12, 18 and 24 days post-anthesis (DPA) fibers from a green fiber cotton accession and its white-colored fiber (WCF) near-isogenic line. We found a total of 2047 non-redundant metabolites in GCF and WCF that were enriched in 80 pathways, including those of biosynthesis of phenylpropanoid, cutin, suberin, and wax. Most metabolites, particularly sinapaldehyde, of the phenylpropanoid pathway had a higher level in GCF than in WCF, consistent with the significant up-regulation of the genes responsible for biosynthesis of those metabolites. Weighted gene co-expression network analysis (WGCNA) of genes differentially expressed between GCF and WCF was used to uncover gene-modules co-expressed or associated with the accumulation of green pigments. Of the 16 gene-modules co-expressed with fiber color or time points, the blue module associated with G24 (i.e., GCF at 24 DPA) was of particular importance because a large proportion of its genes were significantly up-regulated at 24 DPA when fiber color was visually distinguishable between GCF and WCF. A total of 56 hub genes, including the two homoeologous Gh4CL4 that could act in green pigment biosynthesis, were identified among the genes of the blue module that are mainly involved in lipid metabolism, phenylpropanoid biosynthesis, RNA transcription, signaling, and transport. Our results provide novel insights into the mechanisms underlying pigmentation of green fibers and clues for developing cottons with stable green colored fibers.

          Related collections

          Most cited references45

          • Record: found
          • Abstract: found
          • Article: not found

          Cytoscape: software for visualization and analysis of biological networks.

          Substantial progress has been made in the field of "omics" research (e.g., Genomics, Transcriptomics, Proteomics, and Metabolomics), leading to a vast amount of biological data. In order to represent large biological data sets in an easily interpretable manner, this information is frequently visualized as graphs, i.e., a set of nodes and edges. Nodes are representations of biological molecules and edges connect the nodes depicting some kind of relationship. Obviously, there is a high demand for computer-based assistance for both visualization and analysis of biological data, which are often heterogeneous and retrieved from different sources. This chapter focuses on software tools that assist in visual exploration and analysis of biological networks. Global requirements for such programs are discussed. Utilization of visualization software is exemplified using the widely used Cytoscape tool. Additional information about the use of Cytoscape is provided in the Notes section. Furthermore, special features of alternative software tools are highlighted in order to assist researchers in the choice of an adequate program for their specific requirements.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Functional analysis of the Arabidopsis PAL gene family in plant growth, development, and response to environmental stress.

            Phenylalanine ammonia-lyase (PAL) catalyzes the first step of the phenylpropanoid pathway, which produces precursors to a variety of important secondary metabolites. Arabidopsis (Arabidopsis thaliana) contains four PAL genes (PAL1-PAL4), but there has been no genetic analysis to assess the biological functions of the entire gene family. Here, we report the generation and analysis of combined mutations for the four Arabidopsis PAL genes. Contrary to a previous report, we found that three independent pal1 pal2 double mutants were fertile and generated yellow seeds due to the lack of condensed tannin pigments in the seed coat. The pal1 pal2 double mutants were also deficient in anthocyanin pigments in various plant tissues, which accumulate in wild-type plants under stress conditions. Thus, PAL1 and PAL2 have a redundant role in flavonoid biosynthesis. Furthermore, the pal1 pal2 double mutants were more sensitive to ultraviolet-B light but more tolerant to drought than wild-type plants. We have also generated two independent pal1 pal2 pal3 pal4 quadruple knockout mutants, which are stunted and sterile. The quadruple knockout mutants still contained about 10% of the wild-type PAL activity, which might result from one or more leaky pal mutant genes or from other unknown PAL genes. The quadruple mutants also accumulated substantially reduced levels of salicylic acid and displayed increased susceptibility to a virulent strain of the bacterial pathogen Pseudomonas syringae. These results provide further evidence for both distinct and overlapping roles of the Arabidopsis PAL genes in plant growth, development, and responses to environmental stresses.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Stress-Induced Phenylpropanoid Metabolism

                Bookmark

                Author and article information

                Journal
                Int J Mol Sci
                Int J Mol Sci
                ijms
                International Journal of Molecular Sciences
                MDPI
                1422-0067
                29 September 2019
                October 2019
                : 20
                : 19
                : 4838
                Affiliations
                [1 ]The Key Laboratory of Oasis Eco-agriculture, Agriculture College, Shihezi University, Bei 5 Road, Shihezi 832003, China; shichaosun@ 123456aliyun.com (S.S.); xianpengxiongshzu@ 123456aliyun.com (X.-p.X.)
                [2 ]CSIRO Agriculture and Food, GPO Box 1700, Canberra 2601, Australia; Qianhao.Zhu@ 123456csiro.au
                Author notes
                Author information
                https://orcid.org/0000-0002-8068-8102
                Article
                ijms-20-04838
                10.3390/ijms20194838
                6801983
                31569469
                778678ac-ef45-413e-b5bc-dfed2496904d
                © 2019 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 07 August 2019
                : 27 September 2019
                Categories
                Article

                Molecular biology
                naturally colored cotton,pigment,transcriptome,metabolome,gossypium hirsutum l.
                Molecular biology
                naturally colored cotton, pigment, transcriptome, metabolome, gossypium hirsutum l.

                Comments

                Comment on this article