Blog
About

24
views
0
recommends
+1 Recommend
0 collections
    1
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Evaluation of transmission risks associated with in vivo replication of several high containment pathogens in a biosafety level 4 laboratory

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Containment level 4 (CL4) laboratories studying biosafety level 4 viruses are under strict regulations to conduct nonhuman primate (NHP) studies in compliance of both animal welfare and biosafety requirements. NHPs housed in open-barred cages raise concerns about cross-contamination between animals, and accidental exposure of personnel to infectious materials. To address these concerns, two NHP experiments were performed. One examined the simultaneous infection of 6 groups of NHPs with 6 different viruses (Machupo, Junin, Rift Valley Fever, Crimean-Congo Hemorrhagic Fever, Nipah and Hendra viruses). Washing personnel between handling each NHP group, floor to ceiling biobubble with HEPA filter, and plexiglass between cages were employed for partial primary containment. The second experiment employed no primary containment around open barred cages with Ebola virus infected NHPs 0.3 meters from naïve NHPs. Viral antigen-specific ELISAs, qRT-PCR and TCID 50 infectious assays were utilized to determine antibody levels and viral loads. No transmission of virus to neighbouring NHPs was observed suggesting limited containment protocols are sufficient for multi-viral CL4 experiments within one room. The results support the concept that Ebola virus infection is self-contained in NHPs infected intramuscularly, at least in the present experimental conditions, and is not transmitted to naïve NHPs via an airborne route.

          Related collections

          Most cited references 37

          • Record: found
          • Abstract: found
          • Article: not found

          Rift Valley fever epidemic in Saudi Arabia: epidemiological, clinical, and laboratory characteristics.

          This cohort descriptive study summarizes the epidemiological, clinical, and laboratory characteristics of the Rift Valley fever (RVF) epidemic that occurred in Saudi Arabia from 26 August 2000 through 22 September 2001. A total of 886 cases were reported. Of 834 reported cases for which laboratory results were available, 81.9% were laboratory confirmed, of which 51.1% were positive for only RVF immunoglobulin M, 35.7% were positive for only RVF antigen, and 13.2% were positive for both. The mean age (+/- standard deviation) was 46.9+/-19.4 years, and the ratio of male to female patients was 4:1. Clinical and laboratory features included fever (92.6% of patients), nausea (59.4%), vomiting (52.6%), abdominal pain (38.0%), diarrhea (22.1%), jaundice (18.1%), neurological manifestations (17.1%), hemorrhagic manifestations (7.1%), vision loss or scotomas (1.5%), elevated liver enzyme levels (98%), elevated lactate dehydrogenase level (60.2%), thrombocytopenia (38.4%), leukopenia (39.7%), renal impairment or failure (27.8%), elevated creatine kinase level (27.3%), and severe anemia (15.1%). The mortality rate was 13.9%. Bleeding, neurological manifestations, and jaundice were independently associated with a high mortality rate. Patients with leukopenia had significantly a lower mortality rate than did those with a normal or high leukocyte count (2.3% vs. 27.9%; odds ratio, 0.09; 95% confidence interval, 0.01-0.63).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Clinical features of Nipah virus encephalitis among pig farmers in Malaysia.

            Between September 1998 and June 1999, there was an outbreak of severe viral encephalitis due to Nipah virus, a newly discovered paramyxovirus, in Malaysia. We studied the clinical features of the patients with Nipah virus encephalitis who were admitted to a medical center in Kuala Lumpur. The case definition was based on epidemiologic, clinical, cerebrospinal fluid, and neuroimaging findings. Ninety-four patients with Nipah virus infection were seen from February to June 1999 (mean age, 37 years; ratio of male patients to female patients, 4.5 to 1). Ninety-three percent had had direct contact with pigs, usually in the two weeks before the onset of illness, suggesting that there was direct viral transmission from pigs to humans and a short incubation period. The main presenting features were fever, headache, dizziness, and vomiting. Fifty-two patients (55 percent) had a reduced level of consciousness and prominent brain-stem dysfunction. Distinctive clinical signs included segmental myoclonus, areflexia and hypotonia, hypertension, and tachycardia and thus suggest the involvement of the brain stem and the upper cervical spinal cord. The initial cerebrospinal fluid findings were abnormal in 75 percent of patients. Antibodies against Hendra virus were detected in serum or cerebrospinal fluid in 76 percent of 83 patients tested. Thirty patients (32 percent) died after rapid deterioration in their condition. An abnormal doll's-eye reflex and tachycardia were factors associated with a poor prognosis. Death was probably due to severe brain-stem involvement. Neurologic relapse occurred after initially mild disease in three patients. Fifty patients (53 percent) recovered fully, and 14 (15 percent) had persistent neurologic deficits. Nipah virus causes a severe, rapidly progressive encephalitis with a high mortality rate and features that suggest involvement of the brain stem. The infection is associated with recent contact with pigs.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Clinical presentation of nipah virus infection in Bangladesh.

              In Bangladesh, 4 outbreaks of Nipah virus infection were identified during the period 2001-2004. We characterized the clinical features of Nipah virus-infected individuals affected by these outbreaks. We classified patients as having confirmed cases of Nipah virus infection if they had antibodies reactive with Nipah virus antigen. Patients were considered to have probable cases of Nipah virus infection if they had symptoms consistent with Nipah virus infection during the same time and in the same community as patients with confirmed cases. We identified 92 patients with Nipah virus infection, 67 (73%) of whom died. Although all age groups were affected, 2 outbreaks principally affected young persons (median age, 12 years); 62% of the affected persons were male. Fever, altered mental status, headache, cough, respiratory difficulty, vomiting, and convulsions were the most common signs and symptoms; clinical and radiographic features of acute respiratory distress syndrome of Nipah illness were identified during the fourth outbreak. Among those who died, death occurred a median of 6 days (range, 2-36 days) after the onset of illness. Patients who died were more likely than survivors to have a temperature >37.8 degrees C, altered mental status, difficulty breathing, and abnormal plantar reflexes. Among patients with Nipah virus infection who had well-defined exposure to another patient infected with Nipah virus, the median incubation period was 9 days (range, 6-11 days). Nipah virus infection produced rapidly progressive severe illness affecting the central nervous and respiratory systems. Clinical characteristics of Nipah virus infection in Bangladesh, including a severe respiratory component, appear distinct from clinical characteristics reported during earlier outbreaks in other countries.
                Bookmark

                Author and article information

                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group
                2045-2322
                25 July 2014
                2014
                : 4
                Affiliations
                [1 ]Special Pathogens Program, Public Health Agency of Canada , 1015 Arlington St., Winnipeg. Manitoba
                [2 ]Containment Services, Public Health Agency of Canada , 1015 Arlington St., Winnipeg. Manitoba
                [3 ]Bioforensics Assay Development and Diagnostics; Public Health Agency of Canada , 1015 Arlington St., Winnipeg. Manitoba
                [4 ]Departments of Medical Microbiology, University of Manitoba , Winnipeg, MB, Canada
                [5 ]Departments of Immunology, University of Manitoba , Winnipeg, MB, Canada
                [6 ]Departments of Pediatrics and Child Health, University of Manitoba , Winnipeg, MB, Canada
                [7 ]Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine , Philadelphia, PA, USA
                [8 ]These authors contributed equally to this work.
                [9 ]Current address: Viral Special Pathogens Branch, Centers for Disease Control, Atlanta, GA, USA.
                Author notes
                Article
                srep05824
                10.1038/srep05824
                5376055
                25059478
                Copyright © 2014, Macmillan Publishers Limited. All rights reserved

                This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder in order to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/

                Categories
                Article

                Uncategorized

                Comments

                Comment on this article