23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      BRCA1 Expression is an Important Biomarker for Chemosensitivity: Suppression of BRCA1 Increases the Apoptosis via Up-regulation of p53 and p21 During Cisplatin Treatment in Ovarian Cancer Cells

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          BRCA1 is a tumor suppressor which plays a crucial role in the repair of DNA double-strand breaks, and its abnormality is responsible for hereditary ovarian cancer syndrome. It has recently been reported that reduced expression of BRCA1 is also common in sporadic ovarian carcinoma via its promoter hypermethylation, and that ovarian carcinoma patients negative for BRCA1 expression showed favorable prognosis. To address if BRCA1 expression plays a role in the chemotherapeutic response, we analyzed the effect of BRCA1 suppression on the sensitivity to cisplatin and paclitaxel in ovarian cancer cells. Specific siRNA for BRCA1 gene was transfected into 3 ovarian cancer cell lines with various p53 status. Reduced expression of BRCA1 by transfection of BRCA1-siRNA resulted in a 5.3-fold increase in sensitivity to cisplatin in p53-wild A2780 cells, but not in p53-mutated A2780/CDDP and p53-deleted SKOV3 cells. Regarding the sensitivity to paclitaxel, BRCA1 suppression caused no significant changes in all the 3 cell lines. For ionizing radiation sensitivity, BRCA1 suppression also showed a significant higher sensitivity in A2780 cells. Growth curve and cell cycle analyses showed no significant differences between BRCA1-siRNA-transfected A2780 cells and control cells. However, cisplatin treatment under suppression of BRCA1 showed a significantly increased apoptosis along with up-regulation of p53 and p21 in A2780 cells. Accordingly, reduced expression of BRCA1 enhances the cisplatin sensitivity and apoptosis via up-regulation of p53 and p21, but does not affect the paclitaxel sensitivity. Expression of BRCA1 might be an important biomarker for cisplatin resistance in ovarian carcinoma.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: found
          • Article: not found

          A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1.

          A strong candidate for the 17q-linked BRCA1 gene, which influences susceptibility to breast and ovarian cancer, has been identified by positional cloning methods. Probable predisposing mutations have been detected in five of eight kindreds presumed to segregate BRCA1 susceptibility alleles. The mutations include an 11-base pair deletion, a 1-base pair insertion, a stop codon, a missense substitution, and an inferred regulatory mutation. The BRCA1 gene is expressed in numerous tissues, including breast and ovary, and encodes a predicted protein of 1863 amino acids. This protein contains a zinc finger domain in its amino-terminal region, but is otherwise unrelated to previously described proteins. Identification of BRCA1 should facilitate early diagnosis of breast and ovarian cancer susceptibility in some individuals as well as a better understanding of breast cancer biology.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            BRCA1 mutations in primary breast and ovarian carcinomas.

            Loss of heterozygosity data from familial tumors suggest that BRCA1, a gene that confers susceptibility to ovarian and early-onset breast cancer, encodes a tumor suppressor. The BRCA1 region is also subject to allelic loss in sporadic breast and ovarian cancers, an indication that BRCA1 mutations may occur somatically in these tumors. The BRCA1 coding region was examined for mutations in primary breast and ovarian tumors that show allele loss at the BRCA1 locus. Mutations were detected in 3 of 32 breast and 1 of 12 ovarian carcinomas; all four mutations were germline alterations and occurred in early-onset cancers. These results suggest that mutation of BRCA1 may not be critical in the development of the majority of breast and ovarian cancers that arise in the absence of a mutant germline allele.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The tumor suppressor gene Brca1 is required for embryonic cellular proliferation in the mouse.

              Mutations of the BRCA1 gone in humans are associated with predisposition to breast and ovarian cancers. We show here that Brca1+/- mice are normal and fertile and lack tumors by age eleven months. Homozygous Brca1(5-6) mutant mice die before day 7.5 of embryogenesis. Mutant embryos are poorly developed, with no evidence of mesoderm formation. The extraembryonic region is abnormal, but aggregation with wild-type tetraploid embryos does not rescue the lethality. In vivo, mutant embryos do not exhibit increased apoptosis but show reduced cell proliferation accompanied by decreased expression of cyclin E and mdm-2, a regulator of p53 activity. The expression of cyclin-dependent kinase inhibitor p21 is dramatically increased in the mutant embryos. Buttressing these in vivo observations is the fact that mutant blastocyst growth is grossly impaired in vitro. Thus, the death of Brca1(5-6) mutant embryos prior to gastrulation may be due to a failure of the proliferative burst required for the development of the different germ layers.
                Bookmark

                Author and article information

                Journal
                Biomark Insights
                Biomarker Insights
                Libertas Academica
                1177-2719
                2006
                2 March 2007
                : 1
                : 49-59
                Affiliations
                [1 ] Department of Obstetrics and Gynecology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto 390-8621, Japan
                [2 ] Department of Regenerative Medicine, Toyama University Graduate School of Medicine and Pharmaceutical Sciences, 2630 Sugitani, Toyama 930-0194, Japan
                Author notes
                Correspondence: Akiko Horiuchi, Department of Obstetrics and Gynecology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto 390-8621, Japan. Tel: +81-263-37-2719; Fax: +81-263-34-0944; Email: aki9hori@ 123456hsp.md.shinshu-u.ac.jp
                Article
                bmi-2006-049
                2716781
                19690636
                779a4214-f074-4054-b773-cef5b3438fda
                © 2006 by the authors

                This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).

                History
                Categories
                Original Research

                Clinical chemistry
                cisplatin,brca1,ovarian cancer,biomarker,chemosensitivity
                Clinical chemistry
                cisplatin, brca1, ovarian cancer, biomarker, chemosensitivity

                Comments

                Comment on this article