21
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Quantifying subcellular dynamics in apoptotic cells with two-dimensional Gabor filters

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We demonstrate an optical Fourier filtering method which can be used to characterize subcellular morphology during dynamic cellular function. In this paper, our Fourier filters were based on two-dimensional Gabor elementary functions, which can be tuned to sense directly object size and orientation. We utilize this method to quantify changes in mitochondrial and nuclear structure during the first three hours of apoptosis. We find that the technique is sensitive to a decrease in particle orientation consistent with apoptosis-induced mitochondrial fragmentation. The scattering signal changes were less pronounced in the nucleus and the remainder of the cytoplasm. Particles in these regions were less oriented than mitochondria and did not change orientation significantly.

          Related collections

          Most cited references13

          • Record: found
          • Abstract: found
          • Article: not found

          Guidelines for the use and interpretation of assays for monitoring cell death in higher eukaryotes.

          Cell death is essential for a plethora of physiological processes, and its deregulation characterizes numerous human diseases. Thus, the in-depth investigation of cell death and its mechanisms constitutes a formidable challenge for fundamental and applied biomedical research, and has tremendous implications for the development of novel therapeutic strategies. It is, therefore, of utmost importance to standardize the experimental procedures that identify dying and dead cells in cell cultures and/or in tissues, from model organisms and/or humans, in healthy and/or pathological scenarios. Thus far, dozens of methods have been proposed to quantify cell death-related parameters. However, no guidelines exist regarding their use and interpretation, and nobody has thoroughly annotated the experimental settings for which each of these techniques is most appropriate. Here, we provide a nonexhaustive comparison of methods to detect cell death with apoptotic or nonapoptotic morphologies, their advantages and pitfalls. These guidelines are intended for investigators who study cell death, as well as for reviewers who need to constructively critique scientific reports that deal with cellular demise. Given the difficulties in determining the exact number of cells that have passed the point-of-no-return of the signaling cascades leading to cell death, we emphasize the importance of performing multiple, methodologically unrelated assays to quantify dying and dead cells.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two-dimensional visual cortical filters.

            J Daugman (1985)
            Two-dimensional spatial linear filters are constrained by general uncertainty relations that limit their attainable information resolution for orientation, spatial frequency, and two-dimensional (2D) spatial position. The theoretical lower limit for the joint entropy, or uncertainty, of these variables is achieved by an optimal 2D filter family whose spatial weighting functions are generated by exponentiated bivariate second-order polynomials with complex coefficients, the elliptic generalization of the one-dimensional elementary functions proposed in Gabor's famous theory of communication [J. Inst. Electr. Eng. 93, 429 (1946)]. The set includes filters with various orientation bandwidths, spatial-frequency bandwidths, and spatial dimensions, favoring the extraction of various kinds of information from an image. Each such filter occupies an irreducible quantal volume (corresponding to an independent datum) in a four-dimensional information hyperspace whose axes are interpretable as 2D visual space, orientation, and spatial frequency, and thus such a filter set could subserve an optimally efficient sampling of these variables. Evidence is presented that the 2D receptive-field profiles of simple cells in mammalian visual cortex are well described by members of this optimal 2D filter family, and thus such visual neurons could be said to optimize the general uncertainty relations for joint 2D-spatial-2D-spectral information resolution. The variety of their receptive-field dimensions and orientation and spatial-frequency bandwidths, and the correlations among these, reveal several underlying constraints, particularly in width/length aspect ratio and principal axis organization, suggesting a polar division of labor in occupying the quantal volumes of information hyperspace.(ABSTRACT TRUNCATED AT 250 WORDS)
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A QUANTITATIVE STEREOLOGICAL DESCRIPTION OF THE ULTRASTRUCTURE OF NORMAL RAT LIVER PARENCHYMAL CELLS

              The principles of stereology have been applied to a morphometric analysis of parenchymal cells from the peripheral, midzonal, and central regions of normal rat liver lobules. The fractional volumes of cytoplasm occupied by mitochondria, peroxisomes, lysosomes, lipid, and glycogen have been determined. The surface densities of smooth- and rough-surfaced endoplasmic reticulum and of mitochondrial envelope and cristae have also been measured. The average number and dimensions of mitochondria and peroxisomes have been evaluated. By the use of an independent measurement of the average cytoplasmic volume, these data have been expressed as the actual volumes, areas, and numbers per cell in the different parts of the hepatic lobule. Similarly, the volumes of the envelope, cristae, and matrix compartments and the area of cristae membranes have been calculated for the average-sized mitochondrion in each lobular zone. Structural homogeneity is found in over 80% of normal rat liver parenchymal cells, with most of the significant differences being confined to those cells immediately surrounding the central veins.
                Bookmark

                Author and article information

                Journal
                Biomed Opt Express
                BOE
                Biomedical Optics Express
                Optical Society of America
                2156-7085
                01 September 2010
                25 August 2010
                25 August 2010
                : 1
                : 2
                : 720-728
                Affiliations
                [1]Department of Biomedical Engineering, Rutgers University, Piscataway, NJ 08854, USA
                Author notes
                Article
                131132
                10.1364/BOE.1.000720
                3018000
                21258503
                77a2b9e4-9c61-48c4-817f-7b9081eed3a2
                ©2010 Optical Society of America

                This is an open-access article distributed under the terms of the Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Unported License, which permits download and redistribution, provided that the original work is properly cited. This license restricts the article from being modified or used commercially.

                History
                : 6 July 2010
                : 21 August 2010
                : 21 August 2010
                Funding
                Funded by: National Science Foundation
                Award ID: DBI-0852857
                Categories
                Cell Studies
                Custom metadata
                True
                12

                Vision sciences
                (070.1170) analog optical signal processing,(170.1530) cell analysis,(290.5820) scattering measurements

                Comments

                Comment on this article