1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      The Role of Pituitary Ghrelin in Growth Hormone (GH) Secretion: GH-Releasing Hormone-Dependent Regulation of Pituitary Ghrelin Gene Expression and Peptide Content

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Ghrelin is a GH-releasing peptide originally purified from the rat stomach. It has been demonstrated that ghrelin expression, within the gastroenteric system, is regulated by both the metabolic and GH milieu. Our laboratory and others have previously reported that ghrelin is also produced in the pituitary. Given that the receptor for ghrelin [GH secretagogue receptor (GHS-R)] is also expressed by the pituitary, the possibility exists that locally produced ghrelin plays an autocrine/paracrine role in regulating GH release. Because we have previously reported that GHRH infusion increases pituitary levels of ghrelin mRNA, we hypothesized that GHRH could be a key regulator of pituitary ghrelin expression. In this report, we demonstrate that 4-h GHRH infusion increased pituitary ghrelin peptide content. Interestingly, under experimental conditions in which hypothalamic GHRH expression is increased, e.g. GH deficiency due to GH gene mutation, glucocorticoid deficiency, and hypothyroidism, we observed that pituitary ghrelin expression (mRNA levels and peptide content) was also increased. Consistent with this positive correlation between GHRH and ghrelin, pituitary ghrelin expression (mRNA levels and peptide content) was found to be decreased in conditions in which hypothalamic GHRH expression is decreased, e.g. GH treatment, glucocorticoid excess, hyperthyroid state, and food deprivation. Collectively, these results suggest that pituitary ghrelin expression is GHRH dependent. We also conducted functional studies to examine whether the pituitary ghrelin/GHS-R system contributes to GH release after GHRH stimulation, by challenging pituitary cell cultures with GHRH in the presence of a GHS-R-specific inhibitor ([d-Lys-3]-GHRP-6). The GHS-R inhibitor did not affect GH release in the absence of GHRH, but significantly reduced GHRH-mediated GH release. This is the first report demonstrating that endogenous pituitary ghrelin can play a physiological role in GH release, by optimizing somatotroph responsiveness to GHRH.

          Related collections

          Most cited references39

          • Record: found
          • Abstract: found
          • Article: not found

          Ghrelin and des-acyl ghrelin: two major forms of rat ghrelin peptide in gastrointestinal tissue.

          Ghrelin, a novel peptide purified from stomach, is the endogenous ligand for the growth hormone secretagogue receptor and has potent growth hormone-releasing activity. The Ser3 residue of ghrelin is modified by n-octanoic acid, a modification necessary for hormonal activity. We established two ghrelin-specific radioimmunoassays; one recognizes the octanoyl-modified portion and another the C-terminal portion of ghrelin. Using these radioimmunoassay systems, we found that two major molecular forms exist-ghrelin and des-n-octanoyl ghrelin. While ghrelin activates growth-hormone secretagogue (GHS) receptor-expressing cells, the nonmodified des-n-octanyl form of ghrelin, designated as des-acyl ghrelin, does not. In addition to these findings, our radioimmunoassay systems also revealed high concentrations of ghrelin in the stomach and small intestine.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            High constitutive signaling of the ghrelin receptor--identification of a potent inverse agonist.

            Ghrelin is a GH-releasing peptide that also has an important role as an orexigenic hormone-stimulating food intake. By measuring inositol phosphate turnover or by using a reporter assay for transcriptional activity controlled by cAMP-responsive elements, the ghrelin receptor showed strong, ligand-independent signaling in transfected COS-7 or human embryonic kidney 293 cells. Ghrelin and a number of the known nonpeptide GH secretagogues acted as agonists stimulating inositol phosphate turnover further. In contrast, the low potency ghrelin antagonist, [D-Arg1,D-Phe5,D-Trp7,9,Leu11]-substance P was surprisingly found to be a high potency (EC50 = 5.2 nm) full inverse agonist as it decreased the constitutive signaling of the ghrelin receptor down to that observed in untransfected cells. The homologous motilin receptor functioned as a negative control as it did not display any sign of constitutive activity; however, upon agonist stimulation the motilin receptor signaled as strongly as the unstimulated ghrelin receptor. It is concluded that the ghrelin receptor is highly constitutively active and that this activity could be of physiological importance in its role as a regulator of both GH secretion and appetite control. It is suggested that inverse agonists for the ghrelin receptor could be particularly interesting for the treatment of obesity.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Ghrelin and des-acyl ghrelin inhibit cell death in cardiomyocytes and endothelial cells through ERK1/2 and PI 3-kinase/AKT

              Ghrelin is an acyl-peptide gastric hormone acting on the pituitary and hypothalamus to stimulate growth hormone (GH) release, adiposity, and appetite. Ghrelin endocrine activities are entirely dependent on its acylation and are mediated by GH secretagogue (GHS) receptor (GHSR)-1a, a G protein–coupled receptor mostly expressed in the pituitary and hypothalamus, previously identified as the receptor for a group of synthetic molecules featuring GH secretagogue (GHS) activity. Des-acyl ghrelin, which is far more abundant than ghrelin, does not bind GHSR-1a, is devoid of any endocrine activity, and its function is currently unknown. Ghrelin, which is expressed in heart, albeit at a much lower level than in the stomach, also exerts a cardio protective effect through an unknown mechanism, independent of GH release. Here we show that both ghrelin and des-acyl ghrelin inhibit apoptosis of primary adult and H9c2 cardiomyocytes and endothelial cells in vitro through activation of extracellular signal–regulated kinase-1/2 and Akt serine kinases. In addition, ghrelin and des-acyl ghrelin recognize common high affinity binding sites on H9c2 cardiomyocytes, which do not express GHSR-1a. Finally, both MK-0677 and hexarelin, a nonpeptidyl and a peptidyl synthetic GHS, respectively, recognize the common ghrelin and des-acyl ghrelin binding sites, inhibit cell death, and activate MAPK and Akt. These findings provide the first evidence that, independent of its acylation, ghrelin gene product may act as a survival factor directly on the cardiovascular system through binding to a novel, yet to be identified receptor, which is distinct from GHSR-1a.
                Bookmark

                Author and article information

                Journal
                Endocrinology
                The Endocrine Society
                0013-7227
                1945-7170
                August 01 2004
                August 01 2004
                : 145
                : 8
                : 3731-3738
                Affiliations
                [1 ]Department of Medicine (J.K., H.T., T.S., S.I., A.T., H.S., S.O.), Nippon Medical School, Tokyo 113-8603, Japan
                [2 ]Department of Medicine (R.D.K.), University of Illinois at Chicago, Chicago, Illinois 60612
                Article
                10.1210/en.2003-1424
                15087428
                77a6e571-1e2b-4fdf-9135-afbbe7ed9900
                © 2004
                History

                Comments

                Comment on this article