24
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      What Is the Effect of Basic Emotions on Directed Forgetting? Investigating the Role of Basic Emotions in Memory

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Studies presenting memory-facilitating effect of emotions typically focused on affective dimensions of arousal and valence. Little is known, however, about the extent to which stimulus-driven basic emotions could have distinct effects on memory. In the present paper we sought to examine the modulatory effect of disgust, fear, and sadness on intentional remembering and forgetting using widely used item-method directed forgetting (DF) paradigm. Eighteen women underwent fMRI scanning during encoding phase in which they were asked either to remember (R) or to forget (F) pictures. In the test phase all previously used stimuli were re-presented together with the same number of new pictures and participants had to categorize them as old or new, irrespective of the F/R instruction. On the behavioral level we found a typical DF effect, i.e., higher recognition rates for to-be-remembered (TBR) items than to-be-forgotten (TBF) ones for both neutral and emotional categories. Emotional stimuli had higher recognition rate than neutral ones, while among emotional those eliciting disgust produced highest recognition, but at the same time induced more false alarms. Therefore, when false alarm corrected recognition was examined the DF effect was equally strong irrespective of emotion. Additionally, even though subjects rated disgusting pictures as more arousing and negative than other picture categories, logistic regression on the item level showed that the effect of disgust on recognition memory was stronger than the effect of arousal or valence. On the neural level, ROI analyses (with valence and arousal covariates) revealed that correctly recognized disgusting stimuli evoked the highest activity in the left amygdala compared to all other categories. This structure was also more activated for remembered vs. forgotten stimuli, but only in case of disgust or fear eliciting pictures. Our findings, despite several limitations, suggest that disgust have a special salience in memory relative to other negative emotions, which cannot be put down to differences in arousal or valence. The current results thereby support the suggestion that a purely dimensional model of emotional influences on cognition might not be adequate to account for observed effects.

          Related collections

          Most cited references77

          • Record: found
          • Abstract: found
          • Article: not found

          Measuring emotion: the Self-Assessment Manikin and the Semantic Differential.

          The Self-Assessment Manikin (SAM) is a non-verbal pictorial assessment technique that directly measures the pleasure, arousal, and dominance associated with a person's affective reaction to a wide variety of stimuli. In this experiment, we compare reports of affective experience obtained using SAM, which requires only three simple judgments, to the Semantic Differential scale devised by Mehrabian and Russell (An approach to environmental psychology, 1974) which requires 18 different ratings. Subjective reports were measured to a series of pictures that varied in both affective valence and intensity. Correlations across the two rating methods were high both for reports of experienced pleasure and felt arousal. Differences obtained in the dominance dimension of the two instruments suggest that SAM may better track the personal response to an affective stimulus. SAM is an inexpensive, easy method for quickly assessing reports of affective response in many contexts.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The brain basis of emotion: a meta-analytic review.

            Researchers have wondered how the brain creates emotions since the early days of psychological science. With a surge of studies in affective neuroscience in recent decades, scientists are poised to answer this question. In this target article, we present a meta-analytic summary of the neuroimaging literature on human emotion. We compare the locationist approach (i.e., the hypothesis that discrete emotion categories consistently and specifically correspond to distinct brain regions) with the psychological constructionist approach (i.e., the hypothesis that discrete emotion categories are constructed of more general brain networks not specific to those categories) to better understand the brain basis of emotion. We review both locationist and psychological constructionist hypotheses of brain-emotion correspondence and report meta-analytic findings bearing on these hypotheses. Overall, we found little evidence that discrete emotion categories can be consistently and specifically localized to distinct brain regions. Instead, we found evidence that is consistent with a psychological constructionist approach to the mind: A set of interacting brain regions commonly involved in basic psychological operations of both an emotional and non-emotional nature are active during emotion experience and perception across a range of discrete emotion categories.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The amygdala modulates the consolidation of memories of emotionally arousing experiences.

              Converging findings of animal and human studies provide compelling evidence that the amygdala is critically involved in enabling us to acquire and retain lasting memories of emotional experiences. This review focuses primarily on the findings of research investigating the role of the amygdala in modulating the consolidation of long-term memories. Considerable evidence from animal studies investigating the effects of posttraining systemic or intra-amygdala infusions of hormones and drugs, as well as selective lesions of specific amygdala nuclei, indicates that (a) the amygdala mediates the memory-modulating effects of adrenal stress hormones and several classes of neurotransmitters; (b) the effects are selectively mediated by the basolateral complex of the amygdala (BLA); (c) the influences involve interactions of several neuromodulatory systems within the BLA that converge in influencing noradrenergic and muscarinic cholinergic activation; (d) the BLA modulates memory consolidation via efferents to other brain regions, including the caudate nucleus, nucleus accumbens, and cortex; and (e) the BLA modulates the consolidation of memory of many different kinds of information. The findings of human brain imaging studies are consistent with those of animal studies in suggesting that activation of the amygdala influences the consolidation of long-term memory; the degree of activation of the amygdala by emotional arousal during encoding of emotionally arousing material (either pleasant or unpleasant) correlates highly with subsequent recall. The activation of neuromodulatory systems affecting the BLA and its projections to other brain regions involved in processing different kinds of information plays a key role in enabling emotionally significant experiences to be well remembered.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Hum Neurosci
                Front Hum Neurosci
                Front. Hum. Neurosci.
                Frontiers in Human Neuroscience
                Frontiers Media S.A.
                1662-5161
                08 August 2016
                2016
                : 10
                : 378
                Affiliations
                [1] 1Laboratory of Brain Imaging, Neurobiology Centre, Nencki Institute of Experimental Biology – Polish Academy of Sciences Warsaw, Poland
                [2] 2Faculty of Psychology, Warsaw University Warsaw, Poland
                [3] 3Laboratory of Psychophysiology, Department of Neurophysiology, Nencki Institute of Experimental Biology – Polish Academy of Sciences Warsaw, Poland
                Author notes

                Edited by: Mikhail Lebedev, Duke University, USA

                Reviewed by: Bjoern Rasch, University of Fribourg, Switzerland; Thomas Zoëga Ramsøy, Neurons Inc., Denmark; Singularity University, USA

                *Correspondence: Artur Marchewka, a.marchewka@ 123456nencki.gov.pl
                Article
                10.3389/fnhum.2016.00378
                4976095
                27551262
                77ae0641-35a5-4de3-a01a-43449c5c6688
                Copyright © 2016 Marchewka, Wypych, Michałowski, Sińczuk, Wordecha, Jednoróg and Nowicka.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 29 March 2016
                : 13 July 2016
                Page count
                Figures: 6, Tables: 3, Equations: 0, References: 93, Pages: 14, Words: 0
                Categories
                Neuroscience
                Original Research

                Neurosciences
                directed forgetting,discrete emotions,disgust,nencki affective pictures system
                Neurosciences
                directed forgetting, discrete emotions, disgust, nencki affective pictures system

                Comments

                Comment on this article