0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Double deletion of the active zone proteins CAST/ELKS in the mouse forebrain causes high mortality of newborn pups

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Presynaptic active zone cytomatrix proteins are essential elements of neurotransmitter release machinery that govern neural transmission. Among active zone proteins, cytomatrix at the active zone-associated structural protein (CAST) is known to regulate active zone size in retinal photoreceptors and neurotransmitter release by recruiting Ca 2+ channels at various synapses. However, the role of ELKS—a protein from the same family as CAST—and the synergistic roles of CAST/ELKS have not been thoroughly investigated, particularly with regard to mouse behavior. Here, we generated ELKS conditional KO in mouse forebrain synapses by crossing ELKS flox mice with a CaMKII promoter-induced Cre line. Results showed that CAST is dominant at these synapses and that ELKS can support CAST function, but is less effective in the ELKS single KO. Pups of CAST/ELKS double KO in the forebrain were born in Mendelian rations but resulted in eventual death right after the birth. Anatomically, the forebrain neuronal compositions of CAST KO and CAST/ELKS double KO mice were indistinguishable, and the sensory neural network from whiskers on the face was identified as barrelette-like patches in the spinal trigeminal nucleus. Therefore, depletion of CAST and ELKS disrupts neurotransmission from sensory to motor networks, which can lead to deficits in exploration and failure to suckle.

          Related collections

          Most cited references16

          • Record: found
          • Abstract: found
          • Article: not found

          How to Make an Active Zone: Unexpected Universal Functional Redundancy between RIMs and RIM-BPs.

          RIMs and RIM-binding proteins (RBPs) are evolutionary conserved multidomain proteins of presynaptic active zones that are known to recruit Ca(2+) channels; in addition, RIMs perform well-recognized functions in tethering and priming synaptic vesicles for exocytosis. However, deletions of RIMs or RBPs in mice cause only partial impairments in various active zone functions and have no effect on active zone structure, as visualized by electron micrographs, suggesting that their contribution to active zone functions is limited. Here, we show in synapses of the calyx of Held in vivo and hippocampal neurons in culture that combined, but not individual, deletions of RIMs and RBPs eliminate tethering and priming of synaptic vesicles, deplete presynaptic Ca(2+) channels, and ablate active zone complexes, as analyzed by electron microscopy of chemically fixed synapses. Thus, RBPs perform unexpectedly broad roles at the active zone that together with those of RIMs are essential for all active zone functions.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cast

            The cytomatrix at the active zone (CAZ) has been implicated in defining the site of Ca2+-dependent exocytosis of neurotransmitter. We have identified here a novel CAZ protein of ∼120 kD from rat brain and named it CAST (CAZ-associated structural protein). CAST had no transmembrane segment, but had four coiled-coil domains and a putative COOH-terminal consensus motif for binding to PDZ domains. CAST was localized at the CAZ of conventional synapses of mouse brain. CAST bound directly RIM1 and indirectly Munc13-1, presumably through RIM1, forming a ternary complex. RIM1 and Munc13-1 are CAZ proteins implicated in Ca2+-dependent exocytosis of neurotansmitters. Bassoon, another CAZ protein, was also associated with this ternary complex. These results suggest that a network of protein–protein interactions among the CAZ proteins exists at the CAZ. At the early stages of synapse formation, CAST was expressed and partly colocalized with bassoon in the axon shaft and the growth cone. The vesicles immunoisolated by antibassoon antibody–coupled beads contained not only bassoon but also CAST and RIM1. These results suggest that these CAZ proteins are at least partly transported on the same vesicles during synapse formation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Fusion Competent Synaptic Vesicles Persist upon Active Zone Disruption and Loss of Vesicle Docking.

              In a nerve terminal, synaptic vesicle docking and release are restricted to an active zone. The active zone is a protein scaffold that is attached to the presynaptic plasma membrane and opposed to postsynaptic receptors. Here, we generated conditional knockout mice removing the active zone proteins RIM and ELKS, which additionally led to loss of Munc13, Bassoon, Piccolo, and RIM-BP, indicating disassembly of the active zone. We observed a near-complete lack of synaptic vesicle docking and a strong reduction in vesicular release probability and the speed of exocytosis, but total vesicle numbers, SNARE protein levels, and postsynaptic densities remained unaffected. Despite loss of the priming proteins Munc13 and RIM and of docked vesicles, a pool of releasable vesicles remained. Thus, the active zone is necessary for synaptic vesicle docking and to enhance release probability, but releasable vesicles can be localized distant from the presynaptic plasma membrane.
                Bookmark

                Author and article information

                Contributors
                tohtsuka@yamanashi.ac.jp
                Journal
                Mol Brain
                Mol Brain
                Molecular Brain
                BioMed Central (London )
                1756-6606
                29 January 2020
                29 January 2020
                2020
                : 13
                : 13
                Affiliations
                ISNI 0000 0001 0291 3581, GRID grid.267500.6, Department of Biochemistry, Faculty of Medicine, , University of Yamanashi, ; 1110 Shimokato, Chuo, Yamanashi, 409-3898 Japan
                Article
                557
                10.1186/s13041-020-0557-x
                6988216
                31996256
                77bb24f2-b027-4ee4-822b-0aabb77c4431
                © The Author(s). 2020

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 21 October 2019
                : 21 January 2020
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/501100001691, Japan Society for the Promotion of Science;
                Award ID: 25830008
                Award ID: 19H03324
                Award ID: 16K16647
                Award Recipient :
                Categories
                Short Report
                Custom metadata
                © The Author(s) 2020

                Neurosciences
                presynapse,active zone,cast,camkii cre,caz proteins,neurotransmitter release
                Neurosciences
                presynapse, active zone, cast, camkii cre, caz proteins, neurotransmitter release

                Comments

                Comment on this article