19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Inferring on the Intentions of Others by Hierarchical Bayesian Learning

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Inferring on others' (potentially time-varying) intentions is a fundamental problem during many social transactions. To investigate the underlying mechanisms, we applied computational modeling to behavioral data from an economic game in which 16 pairs of volunteers (randomly assigned to “player” or “adviser” roles) interacted. The player performed a probabilistic reinforcement learning task, receiving information about a binary lottery from a visual pie chart. The adviser, who received more predictive information, issued an additional recommendation. Critically, the game was structured such that the adviser's incentives to provide helpful or misleading information varied in time. Using a meta-Bayesian modeling framework, we found that the players' behavior was best explained by the deployment of hierarchical learning: they inferred upon the volatility of the advisers' intentions in order to optimize their predictions about the validity of their advice. Beyond learning, volatility estimates also affected the trial-by-trial variability of decisions: participants were more likely to rely on their estimates of advice accuracy for making choices when they believed that the adviser's intentions were presently stable. Finally, our model of the players' inference predicted the players' interpersonal reactivity index (IRI) scores, explicit ratings of the advisers' helpfulness and the advisers' self-reports on their chosen strategy. Overall, our results suggest that humans (i) employ hierarchical generative models to infer on the changing intentions of others, (ii) use volatility estimates to inform decision-making in social interactions, and (iii) integrate estimates of advice accuracy with non-social sources of information. The Bayesian framework presented here can quantify individual differences in these mechanisms from simple behavioral readouts and may prove useful in future clinical studies of maladaptive social cognition.

          Author Summary

          The ability to decode another person's intentions is a critical component of social interactions. This is particularly important when we have to make decisions based on someone else's advice. Our research proposes that this complex cognitive skill (social learning) can be translated into a mathematical model, which prescribes a mechanism for mentally simulating another person's intentions. This study demonstrates that this process can be parsimoniously described as the deployment of hierarchical learning. In other words, participants learn about two quantities: the intentions of the person they interact with and the veracity of the recommendations they offer. As participants become more and more confident about their representation of the other's intentions, they make decisions more in accordance with the advice they receive. Importantly, our modeling framework captures individual differences in the social learning process: The estimated “learning fingerprint” can predict other aspects of participants' behavior, such as their perspective-taking abilities and their explicit ratings of the adviser's level of trustworthiness. The present modeling approach can be further applied in the context of psychiatry to identify maladaptive learning processes in disorders where social learning processes are particularly impaired, such as schizophrenia.

          Related collections

          Most cited references22

          • Record: found
          • Abstract: found
          • Article: not found

          How to grow a mind: statistics, structure, and abstraction.

          In coming to understand the world-in learning concepts, acquiring language, and grasping causal relations-our minds make inferences that appear to go far beyond the data available. How do we do it? This review describes recent approaches to reverse-engineering human learning and cognitive development and, in parallel, engineering more humanlike machine learning systems. Computational models that perform probabilistic inference over hierarchies of flexibly structured representations can address some of the deepest questions about the nature and origins of human thought: How does abstract knowledge guide learning and reasoning from sparse data? What forms does our knowledge take, across different domains and tasks? And how is that abstract knowledge itself acquired?
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The rupture and repair of cooperation in borderline personality disorder.

            To sustain or repair cooperation during a social exchange, adaptive creatures must understand social gestures and the consequences when shared expectations about fair exchange are violated by accident or intent. We recruited 55 individuals afflicted with borderline personality disorder (BPD) to play a multiround economic exchange game with healthy partners. Behaviorally, individuals with BPD showed a profound incapacity to maintain cooperation, and were impaired in their ability to repair broken cooperation on the basis of a quantitative measure of coaxing. Neurally, activity in the anterior insula, a region known to respond to norm violations across affective, interoceptive, economic, and social dimensions, strongly differentiated healthy participants from individuals with BPD. Healthy subjects showed a strong linear relation between anterior insula response and both magnitude of monetary offer received from their partner (input) and the amount of money repaid to their partner (output). In stark contrast, activity in the anterior insula of BPD participants was related only to the magnitude of repayment sent back to their partner (output), not to the magnitude of offers received (input). These neural and behavioral data suggest that norms used in perception of social gestures are pathologically perturbed or missing altogether among individuals with BPD. This game-theoretic approach to psychopathology may open doors to new ways of characterizing and studying a range of mental illnesses.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The computation of social behavior.

              Neuroscientists are beginning to advance explanations of social behavior in terms of underlying brain mechanisms. Two distinct networks of brain regions have come to the fore. The first involves brain regions that are concerned with learning about reward and reinforcement. These same reward-related brain areas also mediate preferences that are social in nature even when no direct reward is expected. The second network focuses on regions active when a person must make estimates of another person's intentions. However, it has been difficult to determine the precise roles of individual brain regions within these networks or how activities in the two networks relate to one another. Some recent studies of reward-guided behavior have described brain activity in terms of formal mathematical models; these models can be extended to describe mechanisms that underlie complex social exchange. Such a mathematical formalism defines explicit mechanistic hypotheses about internal computations underlying regional brain activity, provides a framework in which to relate different types of activity and understand their contributions to behavior, and prescribes strategies for performing experiments under strong control.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Comput Biol
                PLoS Comput. Biol
                plos
                ploscomp
                PLoS Computational Biology
                Public Library of Science (San Francisco, USA )
                1553-734X
                1553-7358
                September 2014
                4 September 2014
                : 10
                : 9
                : e1003810
                Affiliations
                [1 ]Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland
                [2 ]Laboratory for Social and Neural Systems Research, Department of Economics, University of Zurich, Zurich, Switzerland
                [3 ]Wellcome Trust Centre for Neuroimaging, University College London, London, United Kingdom
                [4 ]Institut du Cerveau et de la Moelle épinière (ICM), Hôpital Pitié Salpêtrière, Paris, France
                [5 ]Department of Computer Science, ETH Zurich, Zurich, Switzerland
                University of Minnesota, United States of America
                Author notes

                The authors have declared that no competing interests exist.

                Conceived and designed the experiments: AOD KES CM EF. Performed the experiments: AOD LAEW. Analyzed the data: AOD LK. Contributed reagents/materials/analysis tools: CM JD LAEW LK EIL. Wrote the paper: AOD CM LAEW JD LK EIL EF KES.

                Article
                PCOMPBIOL-D-13-02287
                10.1371/journal.pcbi.1003810
                4154656
                25187943
                77bd879f-2d06-4f28-bb78-a4a7822659e4
                Copyright @ 2014

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 1 January 2014
                : 14 July 2014
                Page count
                Pages: 19
                Funding
                We would like to acknowledge support by the Marie Curie International Fellowship and the UZH Forschungskredit awarded to AOD and the René and Susanne Braginsky Foundation (KES). CM is supported by a Joint Initiative involving Max Planck Society and University College London on Computational Psychiatry and Aging Research. JD acknowledges support from the European Research Council and the IHU-A-IM. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology and Life Sciences
                Neuroscience
                Cognitive Science
                Cognitive Psychology
                Learning
                Psychology
                Social Psychology
                Social Sciences

                Quantitative & Systems biology
                Quantitative & Systems biology

                Comments

                Comment on this article