1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Iron-Containing Oral Contraceptives and Their Effect on Hemoglobin and Biomarkers of Iron Status: A Narrative Review

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Oral contraceptive use has been associated with decreased menstrual blood losses; thus, can independently reduce the risk of anemia and iron deficiency in women. Manufacturers have recently started to include supplemental iron in the non-hormonal placebo tablets of some contraceptives. The aims of this narrative review are: (i) to describe the relationship between oral contraceptive use and both anemia and iron status in women; (ii) to describe the current formulations of iron-containing oral contraceptives (ICOC) available on the market; and (iii) to systematically review the existing literature on the effect of ICOC on biomarkers of anemia and iron status in women. We discovered 21 brands of ICOC, most commonly including 25 mg elemental iron as ferrous fumarate, for seven days, per monthly tablet package. Our search identified one randomized trial evaluating the effectiveness of ICOC use compared to two non-ICOC on increasing hemoglobin (Hb) and iron status biomarker concentrations in women; whereafter 12 months of contraception use, there were no significant differences in Hb concentration nor markers of iron status between the groups. ICOC has the potential to be a cost-effective solution to address both family planning needs and iron deficiency anemia. Yet, more rigorous trials evaluating the effectiveness of ICOC on improving markers of anemia and iron deficiency, as well as investigating the safety of its consumption among iron-replete populations, are warranted.

          Related collections

          Most cited references75

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Review on iron and its importance for human health

          It is well-known that deficiency or over exposure to various elements has noticeable effects on human health. The effect of an element is determined by several characteristics, including absorption, metabolism, and degree of interaction with physiological processes. Iron is an essential element for almost all living organisms as it participates in a wide variety of metabolic processes, including oxygen transport, deoxyribonucleic acid (DNA) synthesis, and electron transport. However, as iron can form free radicals, its concentration in body tissues must be tightly regulated because in excessive amounts, it can lead to tissue damage. Disorders of iron metabolism are among the most common diseases of humans and encompass a broad spectrum of diseases with diverse clinical manifestations, ranging from anemia to iron overload, and possibly to neurodegenerative diseases. In this review, we discuss the latest progress in studies of iron metabolism and bioavailability, and our current understanding of human iron requirement and consequences and causes of iron deficiency. Finally, we discuss strategies for prevention of iron deficiency.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Effects of routine prophylactic supplementation with iron and folic acid on admission to hospital and mortality in preschool children in a high malaria transmission setting: community-based, randomised, placebo-controlled trial.

            Anaemia caused by iron deficiency is common in children younger than age 5 years in eastern Africa. However, there is concern that universal supplementation of children with iron and folic acid in areas of high malaria transmission might be harmful. We did a randomised, placebo-controlled trial, of children aged 1-35 months and living in Pemba, Zanzibar. We assigned children to daily oral supplementation with: iron (12.5 mg) and folic acid (50 mug; n=7950), iron, folic acid, and zinc (n=8120), or placebo (n=8006); children aged 1-11 months received half the dose. Our primary endpoints were all-cause mortality and admission to hospital. Analyses were by intention to treat. This study is registered as an International Standard Randomised Controlled Trial, number ISRCTN59549825. The iron and folic acid-containing groups of the trial were stopped early on Aug 19, 2003, on the recommendation of the data and safety monitoring board. To this date, 24 076 children contributed a follow-up of 25,524 child-years. Those who received iron and folic acid with or without zinc were 12% (95% CI 2-23, p=0.02) more likely to die or need treatment in hospital for an adverse event and 11% (1-23%, p=0.03) more likely to be admitted to hospital; there were also 15% (-7 to 41, p=0.19) more deaths in these groups. Routine supplementation with iron and folic acid in preschool children in a population with high rates of malaria can result in an increased risk of severe illness and death. In the presence of an active programme to detect and treat malaria and other infections, iron-deficient and anaemic children can benefit from supplementation. However, supplementation of those who are not iron deficient might be harmful. As such, current guidelines for universal supplementation with iron and folic acid should be revised.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Iron-deficiency anemia.

                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                Nutrients
                Nutrients
                nutrients
                Nutrients
                MDPI
                2072-6643
                09 July 2021
                July 2021
                : 13
                : 7
                : 2340
                Affiliations
                [1 ]Food, Nutrition and Health, University of British Columbia, 2205 East Mall, Vancouver, BC V6T 1Z4, Canada; jordie.fischer@ 123456ubc.ca (J.A.J.F.); carolinasasai@ 123456alumni.ubc.ca (C.S.S.)
                [2 ]Healthy Starts, BC Children’s Hospital Research Institute, 938 West 28th Ave, Vancouver, BC V5Z 4H4, Canada
                Author notes
                Author information
                https://orcid.org/0000-0003-1268-5564
                https://orcid.org/0000-0002-1025-2194
                Article
                nutrients-13-02340
                10.3390/nu13072340
                8308850
                34371850
                77c1d664-66e7-4b94-875e-b7901316e8af
                © 2021 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( https://creativecommons.org/licenses/by/4.0/).

                History
                : 08 June 2021
                : 06 July 2021
                Categories
                Review

                Nutrition & Dietetics
                iron,ferrous iron,ferritin,iron deficiency,iron-containing oral contraceptives,hemoglobin,anemia,oral contraceptive,contraceptive,birth control

                Comments

                Comment on this article