77
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Pathogenicity of the Fungus, Aspergillus clavatus, Isolated from the Locust, Oedaleus senegalensis, Against Larvae of the Mosquitoes Aedes aegypti, Anopheles gambiae and Culex quinquefasciatus

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The use of insect pathogenic fungi is a promising alternative to chemical control against mosquitoes. Among the Hyphomycetes isolated from insects for mosquito control, the genus Aspergillus remains the least studied. In September 2005, four fungi were isolated from the Senegalese locust, Oedaleus senegalensis Kraus (Orthoptera: Acrididae), collected in Dakar, Senegal. One of these fungi, identified as Aspergillus clavatus, Desmazières (Eurotiales: Trichocomaceae) was highly pathogenic against larvae of the mosquitoes Aedes aegypti L., Anopheles gambiae s.l. Giles and Culex quinquefasciatus Say (Diptera: Culicidae). An application of 1.2 mg/ml dry conidia yielded 100% mortality after 24 hours against both Ae. aegypti and Cx. quinquefasciatus while with An. gambiae it was 95%. With unidentified species in the genus Aspergillus, mortality after 24 h was <5% against all the larval species. Application of A. clavatus produced in a wheat powder medium using doses ranging between 4.3 to 21×107 spores/ml, caused 11 to 68% mortality against Cx. quinquefasciatus at 24h, and 37 to 100% against Ae. aegypti. Microscopic observations showed fungal germination on both Ae. aegypti and Cx. quinquefasciatus larvae. Histological studies revealed that A. clavatus penetrated the cuticle, invaded the gut and disintegrated its cells. Some Cx. quinquefasciatus larvae, treated with A. clavatus reached the pupal stage and produced infected adults. However, the infection was mainly located on the extremity of their abdomen. These results suggest that A. clavatus could be an effective tool to manage mosquito proliferation.

          Related collections

          Most cited references53

          • Record: found
          • Abstract: found
          • Article: not found

          Developments in fungal taxonomy.

          Fungal infections, especially those caused by opportunistic species, have become substantially more common in recent decades. Numerous species cause human infections, and several new human pathogens are discovered yearly. This situation has created an increasing interest in fungal taxonomy and has led to the development of new methods and approaches to fungal biosystematics which have promoted important practical advances in identification procedures. However, the significance of some data provided by the new approaches is still unclear, and results drawn from such studies may even increase nomenclatural confusion. Analyses of rRNA and rDNA sequences constitute an important complement of the morphological criteria needed to allow clinical fungi to be more easily identified and placed on a single phylogenetic tree. Most of the pathogenic fungi so far described belong to the kingdom Fungi; two belong to the kingdom Chromista. Within the Fungi, they are distributed in three phyla and in 15 orders (Pneumocystidales, Saccharomycetales, Dothideales, Sordariales, Onygenales, Eurotiales, Hypocreales, Ophiostomatales, Microascales, Tremellales, Poriales, Stereales, Agaricales, Schizophyllales, and Ustilaginales).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Efficacy and efficiency of new Bacillus thuringiensis var israelensis and Bacillus sphaericus formulations against Afrotropical anophelines in Western Kenya.

            We evaluated the efficacy of new water-dispersible granular (WDG) formulations of Bacillus thuringienis var. israelensis (Bti; VectoBac) and B. sphaericus (Bs; VectoLex), Valent BioScience Corp., Illinois, USA) for the control of larval Anopheles gambiae sensu lato Giles mosquitoes in a malaria-endemic area around Lake Victoria, Western Kenya. WDG and powder formulations were compared in laboratory bioassays and followed by efficiency and residual effect assessments of both WDG formulations in open field experiments. LC50 and LC95 values for the Bti/Bs strains and their formulations show high susceptibility of A. gambiae sensu stricto under laboratory conditions. The larvae proved more susceptible to Bs than to Bti and the WDG formulations were slightly superior to the powder formulations. High efficiency was also shown in the open field trials, and a minimum dosage of 200 g/ha Bti WDG, representing the LC95 of the laboratory tests, was sufficient to fully suppress emergence of mosquitoes when applied at weekly intervals. Bti WDG did not show a residual effect, irrespective of the concentration applied. The Bs WDG formulation, however, showed significant larval reductions up to 11 days post-treatment at application doses of either 1 or 5 kg/ha. We conclude that the main malaria vector in our study area is highly susceptible to these microbial control agents. Minimum effective dosages to achieve elimination of the larval population in a given habitat are extremely low and environmental impact is negligible. Microbial products for larval control have therefore great potential within Integrated Vector Management programmes and may augment control efforts against adult vector stages, such as the use of insecticide-treated bednets, in many parts of Africa.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Infection of malaria (Anopheles gambiae s.s.) and filariasis (Culex quinquefasciatus) vectors with the entomopathogenic fungus Metarhizium anisopliae

              Background Current intra-domiciliary vector control depends on the application of residual insecticides and/or repellents. Although biological control agents have been developed against aquatic mosquito stages, none are available for adults. Following successful use of an entomopathogenic fungus against tsetse flies (Diptera: Glossinidae) we investigated the potency of this fungus as a biological control agent for adult malaria and filariasis vector mosquitoes. Methods In the laboratory, both sexes of Anopheles gambiae sensu stricto and Culex quinquefasciatus were passively contaminated with dry conidia of Metarhizium anisopliae. Pathogenicity of this fungus for An. gambiae was further tested for varying exposure times and different doses of oil-formulated conidia. Results Comparison of Gompertz survival curves and LT50 values for treated and untreated specimens showed that, for both species, infected mosquitoes died significantly earlier (p < 0.0001) than uninfected control groups. No differences in LT50 values were found for different exposure times (24, 48 hrs or continuous exposure) of An. gambiae to dry conidia. Exposure to oil-formulated conidia (doses ranging from 1.6 × 107 to 1.6 × 1010 conidia/m2) gave LT50 values of 9.69 ± 1.24 (lowest dose) to 5.89 ± 0.35 days (highest dose), with infection percentages ranging from 4.4–83.7%. Conclusion Our study marks the first to use an entomopathogenic fungus against adult Afrotropical disease vectors. Given its high pathogenicity for both adult Anopheles and Culex mosquitoes we recommend development of novel targeted indoor application methods for the control of endophagic host-seeking females.
                Bookmark

                Author and article information

                Journal
                J Insect Sci
                J. Insect Sci
                insc
                Journal of Insect Science
                University of Wisconsin Library
                1536-2442
                2009
                13 July 2009
                : 9
                : 53
                Affiliations
                [ 1 ]U.E.R.B.V., Laboratory of Reproduction Biology, Animal Biology Department, Faculty of Sciences and Technics, Cheikh Anta Diop University of Dakar, Senegal. P.O. Box: 5005, Dakar Fann, Senegal
                [ 2 ]Laboratoire d'Histologie, Embryologie et Cytogénétique, Faculté de Médecine, Pharmacie et d'Odontostomatologie, Université Cheikh Anta Diop de Dakar
                [ 3 ]Department of Agriculture and Biological Sciences P.O. Box: 3530 Gambia, University of the Gambia
                Author notes

                Associate Editor: Fernando Vega was editor of this paper

                Article
                10.1673/031.009.5301
                3011963
                20050773
                77c5c885-7968-467f-80be-3b59a3e598b2
                © 2009

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 25 December 2007
                : 3 March 2008
                Page count
                Pages: 7
                Categories
                Article

                Entomology
                biological control,entomopathogenic fungi
                Entomology
                biological control, entomopathogenic fungi

                Comments

                Comment on this article