23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      MicroRNAs in Microglia: How do MicroRNAs Affect Activation, Inflammation, Polarization of Microglia and Mediate the Interaction Between Microglia and Glioma?

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The essential roles of microglia in maintaining homeostasis in the healthy brain and contributing to neuropathology are well documented. Emerging evidence suggests that epigenetic modulation regulates microglial behavior in both physiological and pathological conditions. MicroRNAs (miRNAs) are short, non-coding epigenetic regulators that repress target gene expression mostly via binding to 3′-untranslated region (3′-UTR) of mRNA in a Dicer-dependent manner. Dysregulation of certain miRNAs can contribute to microglial hyper-activation, persistent neuroinflammation, and abnormal macrophage polarization in the brain. These abnormal conditions can support the pathogenesis of neurological disorders such as glioma, Alzheimer’s disease (AD), amyotrophic lateral sclerosis (ALS), stroke, ischemia, and spinal cord injury (SCI). However, the roles of miRNAs in microglia in health and neurological disease have not been systematically summarized. This review will first report the role of Dicer, a key endoribonulease that is responsible for most miRNA biogenesis in microglia. Second, we will focus on recent research about the function of miRNAs in activation, inflammation and polarization of microglia, respectively. In addition, potential crosstalk between microglia and glioma cells via miRNAs will be discussed in this part. Finally, the role of two essential miRNAs, miR-124, and miR-155, in microglia will be highlighted.

          Related collections

          Most cited references75

          • Record: found
          • Abstract: found
          • Article: not found

          MicroRNA-124 promotes microglia quiescence and suppresses EAE by deactivating macrophages via the C/EBP-α-PU.1 pathway.

          MicroRNAs are a family of regulatory molecules involved in many physiological processes, including differentiation and activation of cells of the immune system. We found that brain-specific miR-124 is expressed in microglia but not in peripheral monocytes or macrophages. When overexpressed in macrophages, miR-124 directly inhibited the transcription factor CCAAT/enhancer-binding protein-α (C/EBP-α) and its downstream target PU.1, resulting in transformation of these cells from an activated phenotype into a quiescent CD45(low), major histocompatibility complex (MHC) class II(low) phenotype resembling resting microglia. During experimental autoimmune encephalomyelitis (EAE), miR-124 was downregulated in activated microglia. Peripheral administration of miR-124 in EAE caused systemic deactivation of macrophages, reduced activation of myelin-specific T cells and marked suppression of disease. Conversely, knockdown of miR-124 in microglia and macrophages resulted in activation of these cells in vitro and in vivo. These findings identify miR-124 both as a key regulator of microglia quiescence in the central nervous system and as a previously unknown modulator of monocyte and macrophage activation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Directly visualized glioblastoma-derived extracellular vesicles transfer RNA to microglia/macrophages in the brain.

            To understand the ability of gliomas to manipulate their microenvironment, we visualized the transfer of vesicles and the effects of tumor-released extracellular RNA on the phenotype of microglia in culture and in vivo.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              miR-155 modulates microglia-mediated immune response by down-regulating SOCS-1 and promoting cytokine and nitric oxide production.

              Innate immunity constitutes the first line of defence against both external and endogenous threats in the brain, and microglia cells are considered key mediators of this process. Recent studies have shown that microRNAs (miRNAs) may play a determinant role in the regulation of gene expression during innate immune responses. The major goal of this work was to investigate the contribution of a specific miRNA - miR-155 - to the modulation of the microglia-mediated immune response. For this purpose, in vitro studies were performed in N9 microglia cells to evaluate changes in the levels of this miRNA following microglia activation. A strong up-regulation of miR-155 expression was observed following microglia exposure to lipopolysaccharide, which was consistent with a decrease in the levels of the suppressor of cytokine signalling 1 (SOCS-1) protein, a key inhibitor of the inflammatory process and a predicted target of miR-155. The miR-155 knockdown by anti-miRNA oligonucleotides up-regulated SOCS-1 mRNA and protein levels and significantly decreased the production of nitric oxide and the expression of inflammatory cytokines and inducible nitric oxide synthase. Finally, treatment of neuronal primary cultures with conditioned medium obtained from microglia cells, in which miR-155 was inhibited before cell activation, decreased inflammatory-mediated neuronal cell death. Overall, our results show that miR-155 has a pro-inflammatory role in microglia and is necessary for the progression of the immune response through the modulation of SOCS-1, suggesting that, in a chronic inflammatory context, miR-155 inhibition can have a neuroprotective effect. © 2011 The Authors. Immunology © 2011 Blackwell Publishing Ltd.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Mol Neurosci
                Front Mol Neurosci
                Front. Mol. Neurosci.
                Frontiers in Molecular Neuroscience
                Frontiers Media S.A.
                1662-5099
                10 May 2019
                2019
                : 12
                : 125
                Affiliations
                [1] 1Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Ministry of Education , Hefei, China
                [2] 2Department of Neurosurgery, The First Affiliated Hospital of Anhui Medical University , Hefei, China
                Author notes

                Edited by: Sung Jun Jung, Hanyang University, South Korea

                Reviewed by: Wang-Xia Wang, University of Kentucky, United States; David J. Loane, University of Maryland, United States

                *Correspondence: Jiajie Tu tujiajie@ 123456ahmu.edu.cn Wei Wei wwei@ 123456ahmu.edu.cn

                These authors have contributed equally to this work

                Article
                10.3389/fnmol.2019.00125
                6522842
                31133802
                77c98395-8c5b-45de-ac67-3bf9b19b036c
                Copyright © 2019 Guo, Hong, Wang, Zhang, Körner, Tu and Wei.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 22 January 2019
                : 26 April 2019
                Page count
                Figures: 6, Tables: 1, Equations: 0, References: 108, Pages: 14, Words: 9691
                Funding
                Funded by: National Natural Science Foundation of China 10.13039/501100001809
                Categories
                Neuroscience
                Review

                Neurosciences
                microrna,microglia,activation,inflammation,polarization,glioma
                Neurosciences
                microrna, microglia, activation, inflammation, polarization, glioma

                Comments

                Comment on this article