+1 Recommend
0 collections
      • Record: found
      • Abstract: not found
      • Article: not found

      Cross-Reactive Antibody Responses to the 2009 Pandemic H1N1 Influenza Virus

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          A new pandemic influenza A (H1N1) virus has emerged, causing illness globally, primarily in younger age groups. To assess the level of preexisting immunity in humans and to evaluate seasonal vaccine strategies, we measured the antibody response to the pandemic virus resulting from previous influenza infection or vaccination in different age groups. Using a microneutralization assay, we measured cross-reactive antibodies to pandemic H1N1 virus (2009 H1N1) in stored serum samples from persons who either donated blood or were vaccinated with recent seasonal or 1976 swine influenza vaccines. A total of 4 of 107 persons (4%) who were born after 1980 had preexisting cross-reactive antibody titers of 40 or more against 2009 H1N1, whereas 39 of 115 persons (34%) born before 1950 had titers of 80 or more. Vaccination with seasonal trivalent inactivated influenza vaccines resulted in an increase in the level of cross-reactive antibody to 2009 H1N1 by a factor of four or more in none of 55 children between the ages of 6 months and 9 years, in 12 to 22% of 231 adults between the ages of 18 and 64 years, and in 5% or less of 113 adults 60 years of age or older. Seasonal vaccines that were formulated with adjuvant did not further enhance cross-reactive antibody responses. Vaccination with the A/New Jersey/1976 swine influenza vaccine substantially boosted cross-reactive antibodies to 2009 H1N1 in adults. Vaccination with recent seasonal nonadjuvanted or adjuvanted influenza vaccines induced little or no cross-reactive antibody response to 2009 H1N1 in any age group. Persons under the age of 30 years had little evidence of cross-reactive antibodies to the pandemic virus. However, a proportion of older adults had preexisting cross-reactive antibodies. 2009 Massachusetts Medical Society

          Related collections

          Most cited references 18

          • Record: found
          • Abstract: found
          • Article: not found

          Detection of antibody to avian influenza A (H5N1) virus in human serum by using a combination of serologic assays.

          From May to December 1997, 18 cases of mild to severe respiratory illness caused by avian influenza A (H5N1) viruses were identified in Hong Kong. The emergence of an avian virus in the human population prompted an epidemiological investigation to determine the extent of human-to-human transmission of the virus and risk factors associated with infection. The hemagglutination inhibition (HI) assay, the standard method for serologic detection of influenza virus infection in humans, has been shown to be less sensitive for the detection of antibodies induced by avian influenza viruses. Therefore, we developed a more sensitive microneutralization assay to detect antibodies to avian influenza in humans. Direct comparison of an HI assay and the microneutralization assay demonstrated that the latter was substantially more sensitive in detecting human antibodies to H5N1 virus in infected individuals. An H5-specific indirect enzyme-linked immunosorbent assay (ELISA) was also established to test children's sera. The sensitivity and specificity of the microneutralization assay were compared with those of an H5-specific indirect ELISA. When combined with a confirmatory H5-specific Western blot test, the specificities of both assays were improved. Maximum sensitivity (80%) and specificity (96%) for the detection of anti-H5 antibody in adults aged 18 to 59 years were achieved by using the microneutralization assay combined with Western blotting. Maximum sensitivity (100%) and specificity (100%) in detecting anti-H5 antibody in sera obtained from children less than 15 years of age were achieved by using ELISA combined with Western blotting. This new test algorithm is being used for the seroepidemiologic investigations of the avian H5N1 influenza outbreak.
            • Record: found
            • Abstract: found
            • Article: not found

            Triple-reassortant swine influenza A (H1) in humans in the United States, 2005-2009.

            Triple-reassortant swine influenza A (H1) viruses--containing genes from avian, human, and swine influenza viruses--emerged and became enzootic among pig herds in North America during the late 1990s. We report the clinical features of the first 11 sporadic cases of infection of humans with triple-reassortant swine influenza A (H1) viruses reported to the Centers for Disease Control and Prevention, occurring from December 2005 through February 2009, until just before the current epidemic of swine-origin influenza A (H1N1) among humans. These data were obtained from routine national influenza surveillance reports and from joint case investigations by public and animal health agencies. The median age of the 11 patients was 10 years (range, 16 months to 48 years), and 4 had underlying health conditions. Nine of the patients had had exposure to pigs, five through direct contact and four through visits to a location where pigs were present but without contact. In another patient, human-to-human transmission was suspected. The range of the incubation period, from the last known exposure to the onset of symptoms, was 3 to 9 days. Among the 10 patients with known clinical symptoms, symptoms included fever (in 90%), cough (in 100%), headache (in 60%), and diarrhea (in 30%). Complete blood counts were available for four patients, revealing leukopenia in two, lymphopenia in one, and thrombocytopenia in another. Four patients were hospitalized, two of whom underwent invasive mechanical ventilation. Four patients received oseltamivir, and all 11 recovered from their illness. From December 2005 until just before the current human epidemic of swine-origin influenza viruses, there was sporadic infection with triple-reassortant swine influenza A (H1) viruses in persons with exposure to pigs in the United States. Although all the patients recovered, severe illness of the lower respiratory tract and unusual influenza signs such as diarrhea were observed in some patients, including those who had been previously healthy. 2009 Massachusetts Medical Society
              • Record: found
              • Abstract: found
              • Article: not found

              Neutralizing antibodies derived from the B cells of 1918 influenza pandemic survivors.

              Investigation of the human antibody response to influenza virus infection has been largely limited to serology, with relatively little analysis at the molecular level. The 1918 H1N1 influenza virus pandemic was the most severe of the modern era. Recent work has recovered the gene sequences of this unusual strain, so that the 1918 pandemic virus could be reconstituted to display its unique virulence phenotypes. However, little is known about adaptive immunity to this virus. We took advantage of the 1918 virus sequencing and the resultant production of recombinant 1918 haemagglutinin (HA) protein antigen to characterize at the clonal level neutralizing antibodies induced by natural exposure of survivors to the 1918 pandemic virus. Here we show that of the 32 individuals tested that were born in or before 1915, each showed seroreactivity with the 1918 virus, nearly 90 years after the pandemic. Seven of the eight donor samples tested had circulating B cells that secreted antibodies that bound the 1918 HA. We isolated B cells from subjects and generated five monoclonal antibodies that showed potent neutralizing activity against 1918 virus from three separate donors. These antibodies also cross-reacted with the genetically similar HA of a 1930 swine H1N1 influenza strain, but did not cross-react with HAs of more contemporary human influenza viruses. The antibody genes had an unusually high degree of somatic mutation. The antibodies bound to the 1918 HA protein with high affinity, had exceptional virus-neutralizing potency and protected mice from lethal infection. Isolation of viruses that escaped inhibition suggested that the antibodies recognize classical antigenic sites on the HA surface. Thus, these studies demonstrate that survivors of the 1918 influenza pandemic possess highly functional, virus-neutralizing antibodies to this uniquely virulent virus, and that humans can sustain circulating B memory cells to viruses for many decades after exposure-well into the tenth decade of life.

                Author and article information

                New England Journal of Medicine
                N Engl J Med
                Massachusetts Medical Society
                November 12 2009
                November 12 2009
                : 361
                : 20
                : 1945-1952
                © 2009


                Comment on this article