5
views
0
recommends
+1 Recommend
2 collections
    0
    shares

      Publish your biodiversity research with us!

      Submit your article here.

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Hydradephaga (Coleoptera, Haliplidae, Gyrinidae, and Dytiscidae) fauna of Cape Breton Island, Nova Scotia, Canada: new records, distributions, and faunal composition

      research-article
      1 ,
      ZooKeys
      Pensoft Publishers
      biodiversity, faunistic, Hydradephaga , Maritime Ecozone

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Abstract

          The Haliplidae , Gyrinidae , and Dytiscidae ( Coleoptera ) of Cape Breton Island, Nova Scotia, Canada were surveyed during the years 2006–2007. A total of 2027 individuals from 85 species was collected from 94 different localities, which brings to 87 the number of species recorded for this locality. Among these, Heterosternuta allegheniana (Matta & Wolfe), H. wickhami (Zaitzev), Hydroporus appalachius Sherman, H. gossei Larson & Roughley, H. nigellus Mannerheim, H. puberulus LeConte, Ilybius picipes (Kirby), and I. wasastjernae (C.R. Sahlberg) are reported for the first time in Nova Scotia. The Nearctic component of the fauna is made up of 71 species (81.6%), the Holarctic component of 16 species (18.4%). Most species are characteristic of both the Boreal and Atlantic Maritime Ecozones and have a transcontinental distribution but 19 species (21.8%), which are generally recognized as species with eastern affinities. In an examination of the Hydradephaga of insular portions of Atlantic Canada, it was shown that the island faunas of Cape Breton Island and Prince Edward Island are very similar (87 and 84 species, respectively) despite differences in composition suggesting that more Hydradephaga species have yet to be found on Cape Breton Island.

          Related collections

          Most cited references18

          • Record: found
          • Abstract: found
          • Article: not found

          The role of macroinvertebrates in stream ecosystem function.

          This review focuses on some of the roles of macroinvertebrate functional groups, i.e. grazers, shredders, gatherers, filterers, and predators, in stream-ecosystem processes. Many stream-dwelling insects exploit the physical characteristics of streams to obtain their foods. As consumers at intermediate trophic levels, macroinvertebrates are influenced by both bottom-up and top-down forces in streams and serve as the conduits by which these effects are propagated. Macroinvertebrates can have can important influence on nutrient cycles, primary productivity, decomposition, and translocation of materials. Interactions among macroinvertebrates and their food resources vary among functional groups. Macroinvertebrates constitute an important source of food for numerous fish, and unless outside energy subsidies are greater than in-stream food resources for fish, effective fisheries management must account for fish-invertebrate linkages and macroinvertebrate linkages with resources and habitats. Macroinvertebrates also serve as valuable indicators of stream degradation. The many roles performed by stream-dwelling macroinvertebrates underscore the importance of their conservation.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Beetle assemblages in ponds: effects of habitat and site age

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Systematic data in biodiversity studies: use it or lose it.

              Systematic data in the form of collections data are useful in biodiversity studies in many ways, most importantly because they serve as the only direct evidence of species distributions. However, collecting bias has been demonstrated for most areas of the world and has led some to propose methods that circumvent the need for collections data. New methods that model collections data in combination with abiotic data and predict potential total species distribution are examined using 25,111 records representing 5,123 species of plants and animals from Guyana; some methods use the reduced number of 320 species. These modeled species distributions are evaluated and potential high-priority biodiversity sites are selected based on the concept of irreplaceability, a measure of uniqueness. The major impediments to using collections data are the lack of data that are available in a useful format and the reluctance of most systematists to become involved in biodiversity and conservation research.
                Bookmark

                Author and article information

                Contributors
                Journal
                Zookeys
                Zookeys
                2
                urn:lsid:arphahub.com:pub:45048D35-BB1D-5CE8-9668-537E44BD4C7E
                urn:lsid:zoobank.org:pub:91BD42D4-90F1-4B45-9350-EEF175B1727A
                ZooKeys
                Pensoft Publishers
                1313-2989
                1313-2970
                2019
                09 December 2019
                : 897
                : 49-66
                Affiliations
                [1 ] Department of Biology, Laurentian University, Ramsey Lake Road, Sudbury, ON P3E 2C6, Canada Laurentian University Sudbury Canada
                Author notes
                Corresponding author: Yves Alarie ( yalarie@ 123456laurentian.ca )

                Academic editor: M. Michat

                Article
                46344
                10.3897/zookeys.897.46344
                6914721
                77e8cf77-3f69-4ff2-9057-e5a3a5b30fb4
                Yves Alarie

                This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 05 September 2019
                : 12 November 2019
                Categories
                Checklist
                Animalia
                Coleoptera
                Dytiscidae
                Gyrinidae
                Haliplidae
                Biodiversity & Conservation
                Americas

                Animal science & Zoology
                biodiversity,faunistic, hydradephaga ,maritime ecozone,animalia,coleoptera,dytiscidae

                Comments

                Comment on this article