+1 Recommend
0 collections
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Adult Hippocampal Neurogenesis in Different Taxonomic Groups: Possible Functional Similarities and Striking Controversies

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          Adult neurogenesis occurs in many species, from fish to mammals, with an apparent reduction in the number of both neurogenic zones and new neurons inserted into established circuits with increasing brain complexity. Although the absolute number of new neurons is high in some species, the ratio of these cells to those already existing in the circuit is low. Continuous replacement/addition plays a role in spatial navigation (migration) and other cognitive processes in birds and rodents, but none of the literature relates adult neurogenesis to spatial navigation and memory in primates and humans. Some models developed by computational neuroscience attribute a high weight to hippocampal adult neurogenesis in learning and memory processes, with greater relevance to pattern separation. In contrast to theories involving neurogenesis in cognitive processes, absence/rarity of neurogenesis in the hippocampus of primates and adult humans was recently suggested and is under intense debate. Although the learning process is supported by plasticity, the retention of memories requires a certain degree of consolidated circuitry structures, otherwise the consolidation process would be hampered. Here, we compare and discuss hippocampal adult neurogenesis in different species and the inherent paradoxical aspects.

          Related collections

          Most cited references 204

          • Record: found
          • Abstract: found
          • Article: not found

          Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system.

          Neurogenesis in the mammalian central nervous system is believed to end in the period just after birth; in the mouse striatum no new neurons are produced after the first few days after birth. In this study, cells isolated from the striatum of the adult mouse brain were induced to proliferate in vitro by epidermal growth factor. The proliferating cells initially expressed nestin, an intermediate filament found in neuroepithelial stem cells, and subsequently developed the morphology and antigenic properties of neurons and astrocytes. Newly generated cells with neuronal morphology were immunoreactive for gamma-aminobutyric acid and substance P, two neurotransmitters of the adult striatum in vivo. Thus, cells of the adult mouse striatum have the capacity to divide and differentiate into neurons and astrocytes.
            • Record: found
            • Abstract: found
            • Article: not found

            Learning enhances adult neurogenesis in the hippocampal formation.

            Thousands of hippocampal neurons are born in adulthood, suggesting that new cells could be important for hippocampal function. To determine whether hippocampus-dependent learning affects adult-generated neurons, we examined the fate of new cells labeled with the thymidine analog bromodeoxyuridine following specific behavioral tasks. Here we report that the number of adult-generated neurons doubles in the rat dentate gyrus in response to training on associative learning tasks that require the hippocampus. In contrast, training on associative learning tasks that do not require the hippocampus did not alter the number of new cells. These findings indicate that adult-generated hippocampal neurons are specifically affected by, and potentially involved in, associative memory formation.
              • Record: found
              • Abstract: found
              • Article: not found

              Distinct morphological stages of dentate granule neuron maturation in the adult mouse hippocampus.

              Adult neurogenesis in the dentate gyrus may contribute to hippocampus-dependent functions, yet little is known about when and how newborn neurons are functional because of limited information about the time course of their connectivity. By using retrovirus-mediated gene transduction, we followed the dendritic and axonal growth of adult-born neurons in the mouse dentate gyrus and identified distinct morphological stages that may indicate different levels of connectivity. Axonal projections of newborn neurons reach the CA3 area 10-11 d after viral infection, 5-6 d before the first spines are formed. Quantitative analyses show that the peak of spine growth occurs during the first 3-4 weeks, but further structural modifications of newborn neurons take place for months. Moreover, the morphological maturation is differentially affected by age and experience, as shown by comparisons between adult and postnatal brains and between housing conditions. Our study reveals the key morphological transitions of newborn granule neurons during their course of maturation.

                Author and article information

                05 February 2019
                February 2019
                : 8
                : 2
                [1 ]Laboratory of Molecular Pharmacology, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil; marcusoliveira@ 123456globo.com (M.A.-O.); gabrielaarrifano@ 123456uol.com.br (G.P.F.A.)
                [2 ]Laboratory of Research on Neurodegeneration and Infection, University Hospital João de Barros Barreto, Federal University of Pará, Belém 66073-005, Brazil
                [3 ]Laboratory of Experimental Neuropathology, Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK
                [4 ]Coimbra Institute for Clinical and Biomedical Research (iCBR), and Center for Neuroscience and Cell Biology and Institute for Biomedical Imaging and Life Sciences (CNC.IBILI), Faculty of Medicine, University of Coimbra, Coimbra 3000-548, Portugal; jomalva@ 123456fmed.uc.pt
                Author notes
                [* ]Correspondence: maria.elena.crespo.lopez@ 123456gmail.com or ecrespo@ 123456ufpa.br ; Tel.: +55-913-201-8212; Fax: +55-913-201-7930

                These authors contributed equally.

                © 2019 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).



                Comment on this article