+1 Recommend
1 collections

      To submit your manuscript, please click here

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Interleukin 2 Topical Cream for Treatment of Diabetic Foot Ulcer: Experiment Protocol

      , BSc (Hons) 1 ,
      JMIR Research Protocols
      JMIR Publications Inc.
      type 1 diabetes, topical cream, chronic wound healing, immunotherapy, IL-2

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.



          It is estimated there are 2.9 million diabetic patients in the United Kingdom, and around 5%-7% of patients have diabetic ulcers. This number will continue to increase globally. Diabetic ulcers are a major economic burden on the healthcare system. More than £650 million is spent on foot ulcers or amputations each year, and up to 100 people a week have a limb amputated due to diabetes. In T1DM, the level of IL-2 is reduced, and hence, wound healing is in a prolonged inflammatory phase. It is not known if IL-2 topical cream can shorten the healing process in T1DM patients.


          The objective of this study is to understand the pathophysiology in type 1 diabetes (T1DM) and investigate possible future treatment based on its clinical features. The hypothesis is that IL-2 cream can speed up wound healing in NOD mice and that this can be demonstrated in a ten-week study. An experiment protocol is designed in a mouse model for others to conduct the experiment. The discussion is purely based on diabetic conditions; lifestyle influences like smoking and drinking are not considered.


          Skin incisions will be created on 20 nonobese diabetic (NOD) mice, and IL-2 topical cream will be applied in a 10-week study to prove the hypothesis. Mice will be randomly and equally divide into two groups with one being the control group.


          T1DM patients have a decreased number of T regulatory (Treg) cells and interleukin 2 (IL-2). These are the keys to the disease progression and delay in wound healing. Diabetic ulcer is a chronic wound and characterized by a prolonged inflammatory phase.


          If the experiment is successful, T1DM patients will have an alternative, noninvasive treatment of foot ulcers. In theory, patients with other autoimmune diseases could also use IL-2 topical cream for treatment.

          Related collections

          Most cited references48

          • Record: found
          • Abstract: found
          • Article: not found

          Homeostatic maintenance of natural Foxp3+ CD25+ CD4+ regulatory T cells by interleukin (IL)-2 and induction of autoimmune disease by IL-2 neutralization

          Interleukin (IL)-2 plays a crucial role in the maintenance of natural immunologic self-tolerance. Neutralization of circulating IL-2 by anti–IL-2 monoclonal antibody for a limited period elicits autoimmune gastritis in BALB/c mice. Similar treatment of diabetes-prone nonobese diabetic mice triggers early onset of diabetes and produces a wide spectrum of T cell–mediated autoimmune diseases, including gastritis, thyroiditis, sialadenitis, and notably, severe neuropathy. Such treatment selectively reduces the number of Foxp3-expressing CD25+ CD4+ T cells, but not CD25− CD4+ T cells, in the thymus and periphery of normal and thymectomized mice. IL-2 neutralization inhibits physiological proliferation of peripheral CD25+ CD4+ T cells that are presumably responding to normal self-antigens, whereas it is unable to inhibit their lymphopenia-induced homeostatic expansion in a T cell–deficient environment. In normal naive mice, CD25low CD4+ nonregulatory T cells actively transcribe the IL-2 gene and secrete IL-2 protein in the physiological state. IL-2 is thus indispensable for the peripheral maintenance of natural CD25+ CD4+ regulatory T cells (T reg cells). The principal physiological source of IL-2 for the maintenance of T reg cells appears to be other T cells, especially CD25low CD4+ activated T cells, which include self-reactive T cells. Furthermore, impairment of this negative feedback loop via IL-2 can be a cause and a predisposing factor for autoimmune disease.
            • Record: found
            • Abstract: not found
            • Article: not found

            Wound repair at a glance.

              • Record: found
              • Abstract: found
              • Article: not found

              IL-2 regulates FOXP3 expression in human CD4+CD25+ regulatory T cells through a STAT-dependent mechanism and induces the expansion of these cells in vivo.

              IL-2 plays a critical role in the maintenance of CD4+CD25+ FOXP3(+) regulatory T cells (Tregs) in vivo. We examined the effects of IL-2 signaling in human Tregs. In vitro, IL-2 selectively up-regulated the expression of FOXP3 in purified CD4+CD25+ T cells but not in CD4+CD25- cells. This regulation involved the binding of STAT3 and STAT5 proteins to a highly conserved STAT-binding site located in the first intron of the FOXP3 gene. We also examined the effects of low-dose IL-2 treatment in 12 patients with metastatic cancer and 9 patients with chronic myelogenous leukemia after allogeneic hematopoietic stem cell transplantation. Overall, IL-2 treatment resulted in a 1.9 median fold increase in the frequency of CD4+CD25+ cells in peripheral blood as well as a 9.7 median fold increase in FOXP3 expression in CD3+ T cells. CD56+CD3- natural killer (NK) cells also expanded during IL-2 therapy but did not express FOXP3. In vitro treatment of NK cells with 5-aza-2'-deoxycytidine restored the IL-2 signaling pathway leading to FOXP3 expression, suggesting that this gene was constitutively repressed by DNA methylation in these cells. Our findings support the clinical evaluation of low-dose IL-2 to selectively modulate CD4+CD25+ Tregs and increase expression of FOXP3 in vivo.

                Author and article information

                currently no institutional affiliation , sophiachan325@hotmail.com
                JMIR Res Protoc
                JMIR Res Protoc
                JMIR Research Protocols
                JMIR Publications Inc. (Toronto, Canada )
                Jul-Sep 2015
                14 August 2015
                : 4
                : 3
                : e89
                [1] 1currently no institutional affiliation
                Author notes
                Corresponding Author: Shu Wing Sophia Chan sophiachan325@ 123456hotmail.com
                Author information
                ©Shu Wing Sophia Chan. Originally published in JMIR Research Protocols (http://www.researchprotocols.org), 14.08.2015.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in JMIR Research Protocols, is properly cited. The complete bibliographic information, a link to the original publication on http://www.researchprotocols.org, as well as this copyright and license information must be included.

                : 14 November 2014
                : 12 March 2015

                type 1 diabetes,topical cream,chronic wound healing,immunotherapy,il-2


                Comment on this article