378
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Variational Implicit-Solvent Modeling of Host–Guest Binding: A Case Study on Cucurbit[7]uril|

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The synthetic host cucurbit[7]uril (CB[7]) binds aromatic guests or metal complexes with ultrahigh affinity compared with that typically displayed in protein–ligand binding. Due to its small size, CB[7] serves as an ideal receptor–ligand system for developing computational methods for molecular recognition. Here, we apply the recently developed variational implicit-solvent model (VISM), numerically evaluated by the level-set method, to study hydration effects in the high-affinity binding of the B2 bicyclo[2.2.2]octane derivative to CB[7]. For the unbound host, we find that the host cavity favors the hydrated state over the dry state due to electrostatic effects. For the guest binding, we find reasonable agreement to experimental binding affinities. Dissection of the individual VISM free-energy contributions shows that the major driving forces are water-mediated hydrophobic interactions and the intrinsic (vacuum) host–guest van der Waals interactions. These findings are in line with recent experiments and molecular dynamics simulations with explicit solvent. It is expected that the level-set VISM, with further refinement on the electrostatic descriptions, can efficiently predict molecular binding and recognition in a wide range of future applications.

          Related collections

          Most cited references71

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Long Term Outcomes Following Hospital Admission for Sepsis Using Relative Survival Analysis: A Prospective Cohort Study of 1,092 Patients with 5 Year Follow Up

          Background Sepsis is a leading cause of death in intensive care units and is increasing in incidence. Current trials of novel therapeutic approaches for sepsis focus on 28-day mortality as the primary outcome measure, but excess mortality may extend well beyond this time period. Methods We used relative survival analysis to examine excess mortality in a cohort of 1,028 patients admitted to a tertiary referral hospital with sepsis during 2007–2008, over the first 5 years of follow up. Expected survival was estimated using the Ederer II method, using Australian life tables as the reference population. Cumulative and interval specific relative survival were estimated by age group, sex, sepsis severity and Indigenous status. Results Patients were followed for a median of 4.5 years (range 0–5.2). Of the 1028 patients, the mean age was 46.9 years, 52% were male, 228 (22.2%) had severe sepsis and 218 (21%) died during the follow up period. Mortality based on cumulative relative survival exceeded that of the reference population for the first 2 years post admission in the whole cohort and for the first 3 years in the subgroup with severe sepsis. Independent predictors of mortality over the whole follow up period were male sex, Indigenous Australian ethnicity, older age, higher Charlson Comorbidity Index, and sepsis-related organ dysfunction at presentation. Conclusions The mortality rate of patients hospitalised with sepsis exceeds that of the general population until 2 years post admission. Efforts to improve outcomes from sepsis should examine longer term outcomes than the traditional primary endpoints of 28-day and 90-day mortality.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Preparation of Artificial Plasma Membrane Mimicking Vesicles with Lipid Asymmetry

            Lipid asymmetry, the difference in lipid distribution across the lipid bilayer, is one of the most important features of eukaryotic cellular membranes. However, commonly used model membrane vesicles cannot provide control of lipid distribution between inner and outer leaflets. We recently developed methods to prepare asymmetric model membrane vesicles, but facile incorporation of a highly controlled level of cholesterol was not possible. In this study, using hydroxypropyl-α-cyclodextrin based lipid exchange, a simple method was devised to prepare large unilamellar model membrane vesicles that closely resemble mammalian plasma membranes in terms of their lipid composition and asymmetry (sphingomyelin (SM) and/or phosphatidylcholine (PC) outside/phosphatidylethanolamine (PE) and phosphatidylserine (PS) inside), and in which cholesterol content can be readily varied between 0 and 50 mol%. We call these model membranes “artificial plasma membrane mimicking” (“PMm”) vesicles. Asymmetry was confirmed by both chemical labeling and measurement of the amount of externally-exposed anionic lipid. These vesicles should be superior and more realistic model membranes for studies of lipid-lipid and lipid-protein interaction in a lipid environment that resembles that of mammalian plasma membranes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Outcomes in Patients with Acute and Stable Coronary Syndromes; Insights from the Prospective NOBORI-2 Study

              Background Contemporary data remains limited regarding mortality and major adverse cardiac events (MACE) outcomes in patients undergoing PCI for different manifestations of coronary artery disease. Objectives We evaluated mortality and MACE outcomes in patients treated with PCI for STEMI (ST-elevation myocardial infarction), NSTEMI (non ST-elevation myocardial infarction) and stable angina through analysis of data derived from the Nobori-2 study. Methods Clinical endpoints were cardiac mortality and MACE (a composite of cardiac death, myocardial infarction and target vessel revascularization). Results 1909 patients who underwent PCI were studied; 1332 with stable angina, 248 with STEMI and 329 with NSTEMI. Age-adjusted Charlson co-morbidity index was greatest in the NSTEMI cohort (3.78±1.91) and lowest in the stable angina cohort (3.00±1.69); P<0.0001. Following Cox multivariate analysis cardiac mortality was independently worse in the NSTEMI vs the stable angina cohort (HR 2.31 (1.10–4.87), p = 0.028) but not significantly different for STEMI vs stable angina cohort (HR 0.72 (0.16–3.19), p = 0.67). Similar observations were recorded for MACE (<180 days) (NSTEMI vs stable angina: HR 2.34 (1.21–4.55), p = 0.012; STEMI vs stable angina: HR 2.19 (0.97–4.98), p = 0.061. Conclusions The longer-term Cardiac mortality and MACE were significantly worse for patients following PCI for NSTEMI even after adjustment of clinical demographics and Charlson co-morbidity index whilst the longer-term prognosis of patients following PCI STEMI was favorable, with similar outcomes as those patients with stable angina following PCI.
                Bookmark

                Author and article information

                Journal
                J Chem Theory Comput
                J Chem Theory Comput
                ct
                jctcce
                Journal of Chemical Theory and Computation
                American Chemical Society
                1549-9618
                1549-9626
                01 August 2013
                10 September 2013
                : 9
                : 9
                : 4195-4204
                Affiliations
                []Department of Mathematics and Center for Theoretical Biological Physics, University of California , San Diego, La Jolla, California 92093-0112, United States
                []Department of Chemistry and Biochemistry and Center for Theoretical Biological Physics, University of California , San Diego, La Jolla, California 92093-0365, United States
                [§ ]Howard Hughes Medical Institute, University of California , San Diego, La Jolla, California 92093-0365, United States
                []Department of Medicinal Chemistry, College of Pharmacy, The Henry Eyring Center for Theoretical Chemistry, The University of Utah , Salt Lake City, Utah 84112-5820, United States
                []Department of Mathematics, University of California , San Diego, La Jolla, California 92093-0112, United States
                [# ]Soft Matter and Functional Materials, Helmholtz-Center Berlin , 14109 Berlin, Germany, and Physics Department, Humboldt-University of Berlin , 12489 Berlin, Germany
                []Department of Chemistry and Biochemistry, Department of Pharmacology, and Center for Theoretical and Biological Physics, University of California , San Diego, La Jolla, California 92093-0365, United States
                Author notes
                Article
                10.1021/ct400232m
                3770055
                24039554
                77fe598f-ddcf-450a-97a3-bbd8af296505
                Copyright © 2013 American Chemical Society
                History
                : 22 March 2013
                Funding
                National Institutes of Health, United States
                Categories
                Article
                Custom metadata
                ct400232m
                ct-2013-00232m

                Computational chemistry & Modeling
                Computational chemistry & Modeling

                Comments

                Comment on this article