3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Conceivable Functions of Protein Ubiquitination and Deubiquitination in Reproduction

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Protein ubiquitination with general existence in virtually all eukaryotic cells serves as a significant post-translational modification of cellular proteins, which leads to the degradation of proteins via the ubiquitin–proteasome system. Deubiquitinating enzymes (DUBs) can reverse the ubiquitination effect by removing the ubiquitin chain from the target protein. Together, these two processes participate in regulating protein stability, function, and localization, thus modulating cell cycle, DNA repair, autophagy, and transcription regulation. Accumulating evidence indicates that the ubiquitination/deubiquitination system regulates reproductive processes, including the cell cycle, oocyte maturation, oocyte-sperm binding, and early embryonic development, primarily by regulating protein stability. This review summarizes the extensive research concerning the role of ubiquitin and DUBs in gametogenesis and early embryonic development, which helps us to understand human pregnancy further.

          Related collections

          Most cited references127

          • Record: found
          • Abstract: found
          • Article: not found

          The ubiquitin code.

          The posttranslational modification with ubiquitin, a process referred to as ubiquitylation, controls almost every process in cells. Ubiquitin can be attached to substrate proteins as a single moiety or in the form of polymeric chains in which successive ubiquitin molecules are connected through specific isopeptide bonds. Reminiscent of a code, the various ubiquitin modifications adopt distinct conformations and lead to different outcomes in cells. Here, we discuss the structure, assembly, and function of this ubiquitin code.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A genomic and functional inventory of deubiquitinating enzymes.

            Posttranslational modification of proteins by the small molecule ubiquitin is a key regulatory event, and the enzymes catalyzing these modifications have been the focus of many studies. Deubiquitinating enzymes, which mediate the removal and processing of ubiquitin, may be functionally as important but are less well understood. Here, we present an inventory of the deubiquitinating enzymes encoded in the human genome. In addition, we review the literature concerning these enzymes, with particular emphasis on their function, specificity, and the regulation of their activity.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Ubiquitin modifications

              Protein ubiquitination is a dynamic multifaceted post-translational modification involved in nearly all aspects of eukaryotic biology. Once attached to a substrate, the 76-amino acid protein ubiquitin is subjected to further modifications, creating a multitude of distinct signals with distinct cellular outcomes, referred to as the 'ubiquitin code'. Ubiquitin can be ubiquitinated on seven lysine (Lys) residues or on the N-terminus, leading to polyubiquitin chains that can encompass complex topologies. Alternatively or in addition, ubiquitin Lys residues can be modified by ubiquitin-like molecules (such as SUMO or NEDD8). Finally, ubiquitin can also be acetylated on Lys, or phosphorylated on Ser, Thr or Tyr residues, and each modification has the potential to dramatically alter the signaling outcome. While the number of distinctly modified ubiquitin species in cells is mind-boggling, much progress has been made to characterize the roles of distinct ubiquitin modifications, and many enzymes and receptors have been identified that create, recognize or remove these ubiquitin modifications. We here provide an overview of the various ubiquitin modifications present in cells, and highlight recent progress on ubiquitin chain biology. We then discuss the recent findings in the field of ubiquitin acetylation and phosphorylation, with a focus on Ser65-phosphorylation and its role in mitophagy and Parkin activation.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Physiol
                Front Physiol
                Front. Physiol.
                Frontiers in Physiology
                Frontiers Media S.A.
                1664-042X
                13 July 2022
                2022
                : 13
                : 886261
                Affiliations
                [1] 1 Reproductive Medicine Center , Renmin Hospital of Wuhan University , Wuhan, China
                [2] 2 Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development , Wuhan, China
                [3] 3 Department of Pharmacy , Renmin Hospital of Wuhan University , Wuhan, China
                [4] 4 Department of Clinical Laboratory , Renmin Hospital of Wuhan University , Wuhan, China
                Author notes

                Edited by: Marc Yeste, University of Girona, Spain

                Reviewed by: Jan Nevoral, Charles University, Czechia

                Takamune T. Saito, Kindai University, Japan

                This article was submitted to Reproduction, a section of the journal Frontiers in Physiology

                Article
                886261
                10.3389/fphys.2022.886261
                9326170
                35910557
                7814ae0d-0dd1-4776-8b00-45fa77a4e813
                Copyright © 2022 Wang, Zhou, Ding, Yin, Ye and Zhang.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 28 February 2022
                : 29 April 2022
                Categories
                Physiology
                Review

                Anatomy & Physiology
                ubiquitin,deubiquitinating enzymes,early embryonic development,gametogenesis,fertilization

                Comments

                Comment on this article