26
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Reciprocal and dynamic polarization of planar cell polarity core components and myosin

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The Ciona notochord displays planar cell polarity (PCP), with anterior localization of Prickle (Pk) and Strabismus (Stbm). We report that a myosin is polarized anteriorly in these cells and strongly colocalizes with Stbm. Disruption of the actin/myosin machinery with cytochalasin or blebbistatin disrupts polarization of Pk and Stbm, but not of myosin complexes, suggesting a PCP-independent aspect of myosin localization. Wash out of cytochalasin restored Pk polarization, but not if done in the presence of blebbistatin, suggesting an active role for myosin in core PCP protein localization. On the other hand, in the pk mutant line, aimless, myosin polarization is disrupted in approximately one third of the cells, indicating a reciprocal action of core PCP signaling on myosin localization. Our results indicate a complex relationship between the actomyosin cytoskeleton and core PCP components in which myosin is not simply a downstream target of PCP signaling, but also required for PCP protein localization.

          DOI: http://dx.doi.org/10.7554/eLife.05361.001

          eLife digest

          Animal cells that form flat layers of a tissue, such as the skin or the lining of internal cavities, are often orientated in the same direction. The same is true for structures such as hairs or feathers, which are attached to the skin. This phenomenon is known as ‘planar cell polarity’ (or ‘PCP’ for short).

          Many different organisms use similar mechanisms to establish this kind of tissue pattern. The best-studied mechanism involves the so-called ‘core PCP pathway’. Signaling proteins in this pathway coordinate the polarity of neighboring cells. Other ‘global signaling pathways’ are thought to first ensure that tissues are correctly orientated within the embryo as a whole, and to do this, the global pathways are thought to align a network of filament-like structures within the cells in a particular direction. Once correctly orientated, these filaments—known as microtubules—have been proposed to help position the components of the core PCP pathway such that they can correctly orientate the rest of the cell.

          Now Newman-Smith, Kourakis et al. have identified another network of filaments within cells that interacts with components of the core PCP pathway in a sea squirt called Ciona savignyi. This organism begins life as a tadpole-like larva that has a flexible rod-shaped structure, called a ‘notochord’, running along the length of its body. The cells of the notochord become polarized as they develop. When microtubules are disrupted, their planar polarity remains unaffected. However, when another network of filaments—called the actomyosin network––is chemically disrupted, the polarity of certain core PCP components is lost.

          The findings of Newman-Smith, Kourakis et al. reveal that the core PCP components and the actomyosin network in this sea squirt reinforce each other's polarity. This represents an alternative to the previously described models of planar polarity in which the core PCP components are thought to drive the polarization of the actomyosin network. Whether this model extends to planar cell polarity mechanisms in other organisms, such humans and other animals with backbones, remains a question for future work.

          DOI: http://dx.doi.org/10.7554/eLife.05361.002

          Related collections

          Most cited references42

          • Record: found
          • Abstract: not found
          • Article: not found

          Tunicates and not cephalochordates are the closest living relatives of vertebrates.

          Tunicates or urochordates (appendicularians, salps and sea squirts), cephalochordates (lancelets) and vertebrates (including lamprey and hagfish) constitute the three extant groups of chordate animals. Traditionally, cephalochordates are considered as the closest living relatives of vertebrates, with tunicates representing the earliest chordate lineage. This view is mainly justified by overall morphological similarities and an apparently increased complexity in cephalochordates and vertebrates relative to tunicates. Despite their critical importance for understanding the origins of vertebrates, phylogenetic studies of chordate relationships have provided equivocal results. Taking advantage of the genome sequencing of the appendicularian Oikopleura dioica, we assembled a phylogenomic data set of 146 nuclear genes (33,800 unambiguously aligned amino acids) from 14 deuterostomes and 24 other slowly evolving species as an outgroup. Here we show that phylogenetic analyses of this data set provide compelling evidence that tunicates, and not cephalochordates, represent the closest living relatives of vertebrates. Chordate monophyly remains uncertain because cephalochordates, albeit with a non-significant statistical support, surprisingly grouped with echinoderms, a hypothesis that needs to be tested with additional data. This new phylogenetic scheme prompts a reappraisal of both morphological and palaeontological data and has important implications for the interpretation of developmental and genomic studies in which tunicates and cephalochordates are used as model animals.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Latrunculin alters the actin-monomer subunit interface to prevent polymerization.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Convergent extension, planar-cell-polarity signalling and initiation of mouse neural tube closure.

              Planar-cell-polarity (PCP) signalling is necessary for initiation of neural tube closure in higher vertebrates. In mice with PCP gene mutations, a broad embryonic midline prevents the onset of neurulation through wide spacing of the neural folds. In order to evaluate the role of convergent extension in this defect, we vitally labelled the midline of loop-tail (Lp) embryos mutant for the PCP gene Vangl2. Injection of DiI into the node, and electroporation of a GFP expression vector into the midline neural plate, revealed defective convergent extension in both axial mesoderm and neuroepithelium, before the onset of neurulation. Chimeras containing both wild-type and Lp-mutant cells exhibited mainly wild-type cells in the midline neural plate and notochordal plate, consistent with a cell-autonomous disturbance of convergent extension. Inhibitor studies in whole-embryo culture demonstrated a requirement for signalling via RhoA-Rho kinase, but not jun N-terminal kinase, in convergent extension and the onset of neural tube closure. These findings identify a cell-autonomous defect of convergent extension, requiring PCP signalling via RhoA-Rho kinase, during the development of severe neural tube defects in the mouse.
                Bookmark

                Author and article information

                Contributors
                Role: Reviewing editor
                Journal
                eLife
                eLife
                eLife
                eLife
                eLife Sciences Publications, Ltd
                2050-084X
                2050-084X
                13 April 2015
                2015
                : 4
                : e05361
                Affiliations
                [1 ]deptDepartment of Molecular, Cell and Developmental Biology , University of California, Santa Barbara , Santa Barbara, United States
                [2 ]deptDivision of Biology , Kansas State University , Manhattan, United States
                National Centre for Biological Sciences, Tata Institute for Fundamental Research , India
                National Centre for Biological Sciences, Tata Institute for Fundamental Research , India
                Author notes
                [* ]For correspondence: w_smith@ 123456lifesci.ucsb.edu
                [†]

                These authors contributed equally to this work.

                Article
                05361
                10.7554/eLife.05361
                4417934
                25866928
                78257ff2-c364-4299-a2dc-797b6c630755
                © 2015, Newman-Smith et al

                This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.

                History
                : 28 October 2014
                : 10 April 2015
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/100000002, universityNational Institutes of Health;
                Award ID: GM088997
                Award Recipient :
                The funder had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
                Categories
                Research Article
                Developmental Biology and Stem Cells
                Custom metadata
                2.3
                Planar cell polarity (PCP) components and myosin show a parallel temporal polarization in the Ciona notochord and the mutual interaction between these proteins is required for proper tissue-wide polarity.

                Life sciences
                ciona,planar cell polarity,notohcord,other
                Life sciences
                ciona, planar cell polarity, notohcord, other

                Comments

                Comment on this article