11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Partitioning and speciation of chromium, copper, and arsenic in CCA-contaminated soils: influence of soil composition.

      The Science of the Total Environment
      Arsenates, analysis, chemistry, Arsenic, Biological Availability, Chemistry, Physical, Chromium, Copper, Environmental Monitoring, Models, Theoretical, Physicochemical Phenomena, Soil Pollutants, Solubility, Solvents

      Read this article at

      ScienceOpenPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          This study focused on the influence of soil composition and physicochemical characteristics on the retention and partitioning of Cu, Cr and As in nine chromated copper arsenate (CCA) artificially contaminated soils. A statistical mixture design was used to set up the number of soils and their respective composition. Sequential extraction and modified solvent extraction were used to assess Cu and Cr partitioning and As speciation [As(III) or As(V)]. It was found that peat had a strong influence on CEC (232 meq/100 g), on buffer capacity and on Cu and Cr retention, whereas kaolinite's contribution to the CEC was minor (38 meq/100 g). Average metal retention in mineral soils was low (58% for Cu and 23% for Cr) but increased dramatically in highly organic soils (96% for Cu and 78% for Cr). However, both organic and mineral soils demonstrated a very high sorption of added As (71-81%). Levels of Cu and Cr in a soluble or exchangeable form (F1) in highly organic soils were very low, whereas the levels strongly bound to organic matter were much higher. Conversely, in mineral soils, 47% of Cu and 18% of Cr were found in F1. As a result, Cr and Cu in moderately and highly organic contaminated soils were present in less mobile and less bioavailable forms, whereas in mineral soils, the labile fraction was higher. The modified method used for selective determination of mineral As species in CCA-contaminated soils was found to be quantitative and reliable. Results revealed that arsenic was principally in the pentavalent state. Nevertheless, in organic soils, arsenite was found in significant proportions (average value of 29% in highly organic soils). This indicates that some reduction of arsenate to arsenite occurred since the original species in CCA is As(V).

          Related collections

          Author and article information

          Comments

          Comment on this article