Blog
About

4
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Community-acquired versus hospital-acquired acute kidney injury in patients with acute exacerbation of COPD requiring hospitalization in China

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Purpose

          Previous studies have described the incidence, risk factors, and outcomes for patients with acute exacerbations of COPD (AECOPD) developing acute kidney injury (AKI). However, little is known about the differences between community-acquired AKI (CA-AKI) and hospital-acquired AKI (HA-AKI) in patients with AECOPD. Thus, in this study, we compared prevalence, risk factors, and outcomes for these patients with CA-AKI and HA-AKI.

          Patients and methods

          This study was conducted from January 2014 to January 2017, and data from adult inpatients with AECOPD were analyzed retrospectively. A total of 1,768 patients were included, 280 patients were identified with CA-AKI and 97 patients were with HA-AKI.

          Results

          Prevalence of CA-AKI was 15.8% and that of HA-AKI was 5.5%, giving an overall AKI prevalence of 21.3%. Patients with CA-AKI had a higher prevalence of chronic kidney disease (CKD) and lower prevalence of chronic cor pulmonale than patients with HA-AKI. Risk factors for developing HA-AKI and CA-AKI were similar, such as being elderly, requirement for mechanical ventilation, and a history of coronary artery disease and CKD. Patients with HA-AKI were more likely to have stage 3 AKI and worse short-term outcomes. In comparison with patients with CA-AKI, those with HA-AKI were more likely to require non-invasive mechanical ventilation (31.3% versus 16.8%; P = 0.003) and had a longer duration of mechanical ventilation (11 days versus 8 days; P = 0.020), longer hospitalization (14 days versus 12 days; P = 0.038), and higher inpatient mortality (32.0% versus 13.2%; P < 0.001). Patients with HA-AKI had worse (multivariate-adjusted) inpatient survival than those with CA-AKI (hazard ratio, 1.7 [95% confidence interval, 1.03–2.81; P = 0.038] for the HA-AKI group).

          Conclusion

          AKI was common in patients with AECOPD requiring hospitalization. CA-AKI was more common than HA-AKI but otherwise demonstrated similar demographics and risk factors. Nevertheless, patients with HA-AKI had worse short-term outcomes.

          Related collections

          Most cited references 20

          • Record: found
          • Abstract: found
          • Article: not found

          Effect of mechanical ventilation on inflammatory mediators in patients with acute respiratory distress syndrome: a randomized controlled trial.

          Studies have shown that an inflammatory response may be elicited by mechanical ventilation used for recruitment or derecruitment of collapsed lung units or to overdistend alveolar regions, and that a lung-protective strategy may reduce this response. To test the hypothesis that mechanical ventilation induces a pulmonary and systemic cytokine response that can be minimized by limiting recruitment or derecruitment and overdistention. Randomized controlled trial in the intensive care units of 2 European hospitals from November 1995 to February 1998, with a 28-day follow-up. Forty-four patients (mean [SD] age, 50 [18] years) with acute respiratory distress syndrome were enrolled, 7 of whom were withdrawn due to adverse events. After admission, volume-pressure curves were measured and bronchoalveolar lavage and blood samples were obtained. Patients were randomized to either the control group (n = 19): tidal volume to obtain normal values of arterial carbon dioxide tension (35-40 mm Hg) and positive end-expiratory pressure (PEEP) producing the greatest improvement in arterial oxygen saturation without worsening hemodynamics; or the lung-protective strategy group (n = 18): tidal volume and PEEP based on the volume-pressure curve. Measurements were repeated 24 to 30 and 36 to 40 hours after randomization. Pulmonary and systemic concentrations of inflammatory mediators approximately 36 hours after randomization. Physiological characteristics and cytokine concentrations were similar in both groups at randomization. There were significant differences (mean [SD]) between the control and lung-protective strategy groups in tidal volume (11.1 [1.3] vs 7.6 [1.1] mL/kg), end-inspiratory plateau pressures (31.0 [4.5] vs 24.6 [2.4] cm H2O), and PEEP (6.5 [1.7] vs 14.8 [2.7] cm H2O) (P<.001). Patients in the control group had an increase in bronchoalveolar lavage concentrations of interleukin (IL) 1beta, IL-6, and IL-1 receptor agonist and in both bronchoalveolar lavage and plasma concentrations of tumor necrosis factor (TNF) alpha, IL-6, and TNF-alpha, receptors over 36 hours (P<.05 for all). Patients in the lung-protective strategy group had a reduction in bronchoalveolar lavage concentrations of polymorphonuclear cells, TNF-alpha, IL-1beta, soluble TNF-alpha receptor 55, and IL-8, and in plasma and bronchoalveolar lavage concentrations of IL-6, soluble TNF-alpha receptor 75, and IL-1 receptor antagonist (P<.05). The concentration of the inflammatory mediators 36 hours after randomization was significantly lower in the lung-protective strategy group than in the control group (P<.05). Mechanical ventilation can induce a cytokine response that may be attenuated by a strategy to minimize overdistention and recruitment/derecruitment of the lung. Whether these physiological improvements are associated with improvements in clinical end points should be determined in future studies.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Acute kidney injury-epidemiology, outcomes and economics.

            Acute kidney injury (AKI) is a widespread problem of epidemic status. Compelling evidence indicates that the incidence of AKI is rapidly increasing, particularly among hospitalized patients with acute illness and those undergoing major surgery. This increase might be partially attributable to greater recognition of AKI, improved ascertainment in administrative data and greater sensitivity of consensus diagnostic and classification schemes. Other causes could be an ageing population, increasing incidences of cardiovascular disease, diabetes mellitus and chronic kidney disease (CKD), and an expanding characterization of modifiable risk factors, such as sepsis, administration of contrast media and exposure to nephrotoxins. The sequelae of AKI are severe and characterized by increased risk of short-term and long-term mortality, incident CKD and accelerated progression to end-stage renal disease. AKI-associated mortality is decreasing, but remains unacceptably high. Moreover, the absolute number of patients dying as a result of AKI is increasing as the incidence of the disorder increases, and few proven effective preventative or therapeutic interventions exist. Survivors of AKI, particularly those who remain on renal replacement therapy, often have reduced quality of life and consume substantially greater health-care resources than the general population as a result of longer hospitalizations, unplanned intensive care unit admissions and rehospitalizations.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Injurious mechanical ventilation and end-organ epithelial cell apoptosis and organ dysfunction in an experimental model of acute respiratory distress syndrome.

              Recent clinical trials have demonstrated a decrease in multiple organ dysfunction syndrome (MODS) and mortality in patients with acute respiratory distress syndrome (ARDS) treated with a protective ventilatory strategy. To examine the hypothesis that an injurious ventilatory strategy may lead to end-organ epithelial cell apoptosis and organ dysfunction. In vivo animals: 24 rabbits with acid-aspiration lung injury were ventilated with injurious or noninjurious ventilatory strategies. In vitro: rabbit epithelial cells were exposed to plasma from in vivo rabbit studies. In vivo human: plasma samples from patients included in a previous randomized controlled trial examining a lung protective strategy were analyzed (lung protection group, n = 9 and controls, n = 11). In vivo animals: biochemical markers of liver and renal dysfunction; apoptosis in end organs. In vitro: induction of apoptosis in LLC-RK1 renal tubular epithelial cells. In vivo human: correlation of plasma creatinine and soluble Fas ligand. The injurious ventilatory strategy led to increased rates of epithelial cell apoptosis in the kidney (mean [SE]: injurious, 10.9% [0.88%]; noninjurious, 1.86% [0.17%]; P<.001) and small intestine villi (injurious, 6.7% [0.66%]; noninjurious, 0.97% [0.14%]; P<.001), and led to the elevation of biochemical markers indicating renal dysfunction in vivo. Induction of apoptosis was increased in LLC-RK1 cells incubated with plasma from rabbits ventilated with injurious ventilatory strategy at 4 hours (P =.03) and 8 hours (P =.002). The Fas:Ig, a fusion protein that blocks soluble Fas ligand, attenuated induction of apoptosis in vitro. There was a significant correlation between changes in soluble Fas ligand and changes in creatinine in patients with ARDS (R = 0.64, P =.002). Mechanical ventilation can lead to epithelial cell apoptosis in the kidney and small intestine, accompanied by biochemical evidence of organ dysfunction. This may partially explain the high rate of MODS observed in patients with ARDS and the decrease in morbidity and mortality in patients treated with a lung protective strategy.
                Bookmark

                Author and article information

                Journal
                Int J Chron Obstruct Pulmon Dis
                Int J Chron Obstruct Pulmon Dis
                International Journal of COPD
                International Journal of Chronic Obstructive Pulmonary Disease
                Dove Medical Press
                1176-9106
                1178-2005
                2018
                17 July 2018
                : 13
                : 2183-2190
                Affiliations
                [1 ]Department of Nephrology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
                [2 ]Department of Nephrology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China, wanxin@ 123456njmu.edu.cn
                [3 ]Department of Respiratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
                [4 ]The First Clinical Medical College, Nanjing Medical University, Nanjing, Jiangsu, China
                Author notes
                Correspondence: Xin Wan, Department of Nephrology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing, Jiangsu 210006, China, Email wanxin@ 123456njmu.edu.cn
                [*]

                These authors contributed equally to this work

                Article
                copd-13-2183
                10.2147/COPD.S164648
                6054768
                © 2018 Cao et al. This work is published and licensed by Dove Medical Press Limited

                The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed.

                Categories
                Original Research

                Comments

                Comment on this article